Nuprl Lemma : rep-seq-from-prop3
∀[T:Type]. ∀[n:ℕ]. ∀[s:ℕn ⟶ T]. ∀[f:ℕ ⟶ T].  (rep-seq-from(s.f n@n;n + 1;f) = rep-seq-from(s;n;f) ∈ (ℕ ⟶ T))
Proof
Definitions occuring in Statement : 
rep-seq-from: rep-seq-from(s;n;f), 
seq-add: s.x@n, 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
rep-seq-from: rep-seq-from(s;n;f), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
squash: ↓T, 
not: ¬A, 
false: False, 
prop: ℙ, 
seq-add: s.x@n, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
bfalse: ff, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P)
Lemmas referenced : 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
eq_int_wf, 
assert_of_eq_int, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_seg_wf, 
lelt_wf, 
decidable__le, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
le_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
nat_wf
Rules used in proof : 
functionExtensionality, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
addEquality, 
because_Cache, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
lessCases, 
isect_memberFormation, 
sqequalAxiom, 
isect_memberEquality, 
independent_pairFormation, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
int_eqReduceTrueSq, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
computeAll, 
promote_hyp, 
instantiate, 
cumulativity, 
int_eqReduceFalseSq, 
applyEquality, 
dependent_set_memberEquality, 
functionEquality, 
universeEquality, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].    (rep-seq-from(s.f  n@n;n  +  1;f)  =  rep-seq-from(s;n;f))
Date html generated:
2017_04_20-AM-07_21_17
Last ObjectModification:
2017_02_27-PM-05_56_29
Theory : continuity
Home
Index