Nuprl Lemma : rep-seq-from-prop3
∀[T:Type]. ∀[n:ℕ]. ∀[s:ℕn ⟶ T]. ∀[f:ℕ ⟶ T]. (rep-seq-from(s.f n@n;n + 1;f) = rep-seq-from(s;n;f) ∈ (ℕ ⟶ T))
Proof
Definitions occuring in Statement :
rep-seq-from: rep-seq-from(s;n;f)
,
seq-add: s.x@n
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
rep-seq-from: rep-seq-from(s;n;f)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
nat: ℕ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
less_than: a < b
,
less_than': less_than'(a;b)
,
top: Top
,
true: True
,
squash: ↓T
,
not: ¬A
,
false: False
,
prop: ℙ
,
seq-add: s.x@n
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
bfalse: ff
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
assert: ↑b
,
nequal: a ≠ b ∈ T
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
decidable: Dec(P)
Lemmas referenced :
lt_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_lt_int,
top_wf,
less_than_wf,
eq_int_wf,
assert_of_eq_int,
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformeq_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_eq_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
int_seg_wf,
lelt_wf,
decidable__le,
intformnot_wf,
intformle_wf,
itermConstant_wf,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
le_wf,
itermAdd_wf,
int_term_value_add_lemma,
nat_wf
Rules used in proof :
functionExtensionality,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
sqequalRule,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setElimination,
rename,
hypothesisEquality,
hypothesis,
addEquality,
because_Cache,
natural_numberEquality,
lambdaFormation,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
productElimination,
independent_isectElimination,
lessCases,
isect_memberFormation,
sqequalAxiom,
isect_memberEquality,
independent_pairFormation,
voidElimination,
voidEquality,
imageMemberEquality,
baseClosed,
imageElimination,
independent_functionElimination,
int_eqReduceTrueSq,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
computeAll,
promote_hyp,
instantiate,
cumulativity,
int_eqReduceFalseSq,
applyEquality,
dependent_set_memberEquality,
functionEquality,
universeEquality,
axiomEquality
Latex:
\mforall{}[T:Type]. \mforall{}[n:\mBbbN{}]. \mforall{}[s:\mBbbN{}n {}\mrightarrow{} T]. \mforall{}[f:\mBbbN{} {}\mrightarrow{} T]. (rep-seq-from(s.f n@n;n + 1;f) = rep-seq-from(s;n;f))
Date html generated:
2017_04_20-AM-07_21_17
Last ObjectModification:
2017_02_27-PM-05_56_29
Theory : continuity
Home
Index