Nuprl Lemma : rep-seq-from-prop3

[T:Type]. ∀[n:ℕ]. ∀[s:ℕn ⟶ T]. ∀[f:ℕ ⟶ T].  (rep-seq-from(s.f n@n;n 1;f) rep-seq-from(s;n;f) ∈ (ℕ ⟶ T))


Proof




Definitions occuring in Statement :  rep-seq-from: rep-seq-from(s;n;f) seq-add: s.x@n int_seg: {i..j-} nat: uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  rep-seq-from: rep-seq-from(s;n;f) member: t ∈ T uall: [x:A]. B[x] nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: seq-add: s.x@n ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P)
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eq_int_wf assert_of_eq_int nat_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_seg_wf lelt_wf decidable__le intformnot_wf intformle_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma le_wf itermAdd_wf int_term_value_add_lemma nat_wf
Rules used in proof :  functionExtensionality sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis addEquality because_Cache natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination lessCases isect_memberFormation sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination int_eqReduceTrueSq dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination computeAll promote_hyp instantiate cumulativity int_eqReduceFalseSq applyEquality dependent_set_memberEquality functionEquality universeEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].    (rep-seq-from(s.f  n@n;n  +  1;f)  =  rep-seq-from(s;n;f))



Date html generated: 2017_04_20-AM-07_21_17
Last ObjectModification: 2017_02_27-PM-05_56_29

Theory : continuity


Home Index