Nuprl Lemma : poss-maj_wf

T:Type. ∀eq:EqDecider(T). ∀L:T List. ∀x:T.  (poss-maj(eq;L;x) ∈ ℕ × T)


Proof




Definitions occuring in Statement :  poss-maj: poss-maj(eq;L;x) list: List deq: EqDecider(T) nat: all: x:A. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T poss-maj: poss-maj(eq;L;x) uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_lambda: λ2y.t[x; y] deq: EqDecider(T) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a eqof: eqof(d) ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b int_upper: {i...} so_apply: x[s1;s2]
Lemmas referenced :  list_accum_wf nat_wf false_wf le_wf bool_wf eqtt_to_assert safe-assert-deq nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot eq_int_wf assert_of_eq_int neg_assert_of_eq_int int_upper_subtype_nat nequal-le-implies zero-add subtract_wf int_upper_properties itermSubtract_wf int_term_value_subtract_lemma list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality productEquality hypothesis because_Cache independent_pairEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaEquality productElimination applyEquality setElimination rename unionElimination equalityElimination independent_isectElimination addEquality dependent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry promote_hyp instantiate independent_functionElimination hypothesis_subsumption universeEquality

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:T  List.  \mforall{}x:T.    (poss-maj(eq;L;x)  \mmember{}  \mBbbN{}  \mtimes{}  T)



Date html generated: 2017_04_17-AM-09_08_21
Last ObjectModification: 2017_02_27-PM-05_16_50

Theory : decidable!equality


Home Index