Nuprl Lemma : poss-maj_wf
∀T:Type. ∀eq:EqDecider(T). ∀L:T List. ∀x:T.  (poss-maj(eq;L;x) ∈ ℕ × T)
Proof
Definitions occuring in Statement : 
poss-maj: poss-maj(eq;L;x), 
list: T List, 
deq: EqDecider(T), 
nat: ℕ, 
all: ∀x:A. B[x], 
member: t ∈ T, 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
poss-maj: poss-maj(eq;L;x), 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
deq: EqDecider(T), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
eqof: eqof(d), 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
int_upper: {i...}, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_accum_wf, 
nat_wf, 
false_wf, 
le_wf, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
int_upper_subtype_nat, 
nequal-le-implies, 
zero-add, 
subtract_wf, 
int_upper_properties, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
list_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
productEquality, 
hypothesis, 
because_Cache, 
independent_pairEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaEquality, 
productElimination, 
applyEquality, 
setElimination, 
rename, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
addEquality, 
dependent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
independent_functionElimination, 
hypothesis_subsumption, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:T  List.  \mforall{}x:T.    (poss-maj(eq;L;x)  \mmember{}  \mBbbN{}  \mtimes{}  T)
Date html generated:
2017_04_17-AM-09_08_21
Last ObjectModification:
2017_02_27-PM-05_16_50
Theory : decidable!equality
Home
Index