Nuprl Lemma : remove-repeats-append-one
∀[T:Type]
  ∀eq:EqDecider(T). ∀L:T List. ∀x:T.
    ((||remove-repeats(eq;L @ [x])|| = ||remove-repeats(eq;L)|| ∈ ℤ)
    ∨ (||remove-repeats(eq;L @ [x])|| = (||remove-repeats(eq;L)|| + 1) ∈ ℤ))
Proof
Definitions occuring in Statement : 
remove-repeats: remove-repeats(eq;L), 
length: ||as||, 
append: as @ bs, 
cons: [a / b], 
nil: [], 
list: T List, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
or: P ∨ Q, 
add: n + m, 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
prop: ℙ, 
guard: {T}, 
uimplies: b supposing a, 
set-equal: set-equal(T;x;y), 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
sq_type: SQType(T), 
remove-repeats: remove-repeats(eq;L), 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
squash: ↓T, 
true: True, 
deq: EqDecider(T), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
not: ¬A, 
uiff: uiff(P;Q), 
eqof: eqof(d), 
false: False
Lemmas referenced : 
decidable__l_member, 
decidable-equal-deq, 
deq_wf, 
equal_wf, 
length_wf, 
remove-repeats_wf, 
append_wf, 
cons_wf, 
nil_wf, 
remove-repeats-set-equal, 
member_append, 
member_singleton, 
or_wf, 
l_member_wf, 
iff_wf, 
and_wf, 
set-equal-permute, 
subtype_base_sq, 
int_subtype_base, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
filter_trivial2, 
bnot_wf, 
l_all_iff, 
assert_wf, 
iff_transitivity, 
eqof_wf, 
not_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
safe-assert-deq, 
member-remove-repeats
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
cumulativity, 
unionElimination, 
inlFormation, 
intEquality, 
addEquality, 
natural_numberEquality, 
sqequalRule, 
inrFormation, 
independent_isectElimination, 
addLevel, 
productElimination, 
independent_pairFormation, 
orFunctionality, 
impliesFunctionality, 
hyp_replacement, 
equalitySymmetry, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
instantiate, 
equalityTransitivity, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
setEquality
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}L:T  List.  \mforall{}x:T.
        ((||remove-repeats(eq;L  @  [x])||  =  ||remove-repeats(eq;L)||)
        \mvee{}  (||remove-repeats(eq;L  @  [x])||  =  (||remove-repeats(eq;L)||  +  1)))
 Date html generated: 
2017_04_17-AM-09_10_26
 Last ObjectModification: 
2017_02_27-PM-05_18_22
Theory : decidable!equality
Home
Index