Nuprl Lemma : fset-powerset_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)].  (fset-powerset(eq;s) ∈ {p:fset(fset(T))| ∀x:fset(T). (x ∈ ⇐⇒ x ⊆ s)} )


Proof




Definitions occuring in Statement :  fset-powerset: fset-powerset(eq;s) deq-fset: deq-fset(eq) f-subset: xs ⊆ ys fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q member: t ∈ T set: {x:A| B[x]}  universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset: fset(T) so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q all: x:A. B[x] rev_implies:  Q implies:  Q and: P ∧ Q prop: quotient: x,y:A//B[x; y] fset-powerset: fset-powerset(eq;s) subtype_rel: A ⊆B uimplies: supposing a uiff: uiff(P;Q) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] f-subset: xs ⊆ ys
Lemmas referenced :  fset_wf all_wf iff_wf fset-member_wf deq-fset_wf f-subset_wf list-powerset_wf set_wf list_subtype_fset equal_wf equal-wf-base list_wf set-equal_wf deq_wf fset-extensionality fset-member_witness uiff_wf quotient-member-eq set-equal-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality setEquality extract_by_obid isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality pertypeElimination productElimination because_Cache applyEquality independent_isectElimination lambdaFormation setElimination rename dependent_set_memberEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination productEquality axiomEquality isect_memberEquality universeEquality independent_pairEquality addLevel independent_pairFormation hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].
    (fset-powerset(eq;s)  \mmember{}  \{p:fset(fset(T))|  \mforall{}x:fset(T).  (x  \mmember{}  p  \mLeftarrow{}{}\mRightarrow{}  x  \msubseteq{}  s)\}  )



Date html generated: 2016_10_21-AM-10_47_09
Last ObjectModification: 2016_07_12-AM-05_52_46

Theory : finite!sets


Home Index