Nuprl Lemma : fset-powerset_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)].  (fset-powerset(eq;s) ∈ {p:fset(fset(T))| ∀x:fset(T). (x ∈ p 
⇐⇒ x ⊆ s)} )
Proof
Definitions occuring in Statement : 
fset-powerset: fset-powerset(eq;s)
, 
deq-fset: deq-fset(eq)
, 
f-subset: xs ⊆ ys
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fset: fset(T)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
fset-powerset: fset-powerset(eq;s)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
f-subset: xs ⊆ ys
Lemmas referenced : 
fset_wf, 
all_wf, 
iff_wf, 
fset-member_wf, 
deq-fset_wf, 
f-subset_wf, 
list-powerset_wf, 
set_wf, 
list_subtype_fset, 
equal_wf, 
equal-wf-base, 
list_wf, 
set-equal_wf, 
deq_wf, 
fset-extensionality, 
fset-member_witness, 
uiff_wf, 
quotient-member-eq, 
set-equal-equiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
setEquality, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
pertypeElimination, 
productElimination, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
lambdaFormation, 
setElimination, 
rename, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
productEquality, 
axiomEquality, 
isect_memberEquality, 
universeEquality, 
independent_pairEquality, 
addLevel, 
independent_pairFormation, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].
    (fset-powerset(eq;s)  \mmember{}  \{p:fset(fset(T))|  \mforall{}x:fset(T).  (x  \mmember{}  p  \mLeftarrow{}{}\mRightarrow{}  x  \msubseteq{}  s)\}  )
Date html generated:
2016_10_21-AM-10_47_09
Last ObjectModification:
2016_07_12-AM-05_52_46
Theory : finite!sets
Home
Index