Nuprl Lemma : list-powerset_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List].  (list-powerset(eq;L) ∈ {p:fset(fset(T))| ∀x:fset(T). (x ∈ ⇐⇒ x ⊆ L)} )


Proof




Definitions occuring in Statement :  list-powerset: list-powerset(eq;L) deq-fset: deq-fset(eq) f-subset: xs ⊆ ys fset-member: a ∈ s fset: fset(T) list: List deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q member: t ∈ T set: {x:A| B[x]}  universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q list-powerset: list-powerset(eq;L) cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q empty-fset: {} f-subset: xs ⊆ ys fset-member: a ∈ s eqof: eqof(d) sq_stable: SqStable(P) deq: EqDecider(T) cand: c∧ B uiff: uiff(P;Q) bool: 𝔹 unit: Unit btrue: tt bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b true: True
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list-cases reduce_nil_lemma product_subtype_list colength-cons-not-zero colength_wf_list istype-false le_wf subtract-1-ge-0 subtype_base_sq nat_wf set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf intformeq_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le reduce_cons_lemma list_wf deq_wf fset-singleton_wf fset_wf empty-fset_wf iff_weakening_uiff fset-member_wf deq-fset_wf equal-wf-T-base member-fset-singleton f-subset_wf f-subset-empty fset-union_wf fset-image_wf fset-add_wf member-fset-union cons_wf list_subtype_fset squash_wf exists_wf equal_wf member-fset-image-iff fset-member_witness deq_member_cons_lemma assert-deq-member assert_wf bor_wf eqof_wf deq-member_wf or_wf l_member_wf iff_transitivity assert_of_bor safe-assert-deq sq_stable_from_decidable decidable__f-subset member-fset-add member_wf decidable__fset-member fset-filter_wf bnot_wf member-fset-filter not_wf assert_of_bnot fset-extensionality eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot true_wf istype-universe subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  unionElimination promote_hyp hypothesis_subsumption productElimination Error :equalityIsType1,  because_Cache Error :dependent_set_memberEquality_alt,  instantiate cumulativity intEquality imageElimination applyLambdaEquality Error :equalityIsType4,  addEquality applyEquality universeEquality baseClosed lambdaFormation Error :functionIsType,  Error :productIsType,  Error :inlFormation_alt,  productEquality Error :inrFormation_alt,  imageMemberEquality Error :unionIsType,  hyp_replacement independent_pairEquality equalityElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].
    (list-powerset(eq;L)  \mmember{}  \{p:fset(fset(T))|  \mforall{}x:fset(T).  (x  \mmember{}  p  \mLeftarrow{}{}\mRightarrow{}  x  \msubseteq{}  L)\}  )



Date html generated: 2019_06_20-PM-02_00_41
Last ObjectModification: 2018_10_05-PM-04_22_23

Theory : finite!sets


Home Index