Nuprl Lemma : list-powerset_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List].  (list-powerset(eq;L) ∈ {p:fset(fset(T))| ∀x:fset(T). (x ∈ p ⇐⇒ x ⊆ L)} )
Proof
Definitions occuring in Statement : 
list-powerset: list-powerset(eq;L), 
deq-fset: deq-fset(eq), 
f-subset: xs ⊆ ys, 
fset-member: a ∈ s, 
fset: fset(T), 
list: T List, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
or: P ∨ Q, 
list-powerset: list-powerset(eq;L), 
cons: [a / b], 
le: A ≤ B, 
less_than': less_than'(a;b), 
colength: colength(L), 
nil: [], 
it: ⋅, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
guard: {T}, 
less_than: a < b, 
squash: ↓T, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
decidable: Dec(P), 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
empty-fset: {}, 
f-subset: xs ⊆ ys, 
fset-member: a ∈ s, 
eqof: eqof(d), 
sq_stable: SqStable(P), 
deq: EqDecider(T), 
cand: A c∧ B, 
uiff: uiff(P;Q), 
bool: 𝔹, 
unit: Unit, 
btrue: tt, 
bfalse: ff, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
true: True
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
list-cases, 
reduce_nil_lemma, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
le_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
reduce_cons_lemma, 
list_wf, 
deq_wf, 
fset-singleton_wf, 
fset_wf, 
empty-fset_wf, 
iff_weakening_uiff, 
fset-member_wf, 
deq-fset_wf, 
equal-wf-T-base, 
member-fset-singleton, 
f-subset_wf, 
f-subset-empty, 
fset-union_wf, 
fset-image_wf, 
fset-add_wf, 
member-fset-union, 
cons_wf, 
list_subtype_fset, 
squash_wf, 
exists_wf, 
equal_wf, 
member-fset-image-iff, 
fset-member_witness, 
deq_member_cons_lemma, 
assert-deq-member, 
assert_wf, 
bor_wf, 
eqof_wf, 
deq-member_wf, 
or_wf, 
l_member_wf, 
iff_transitivity, 
assert_of_bor, 
safe-assert-deq, 
sq_stable_from_decidable, 
decidable__f-subset, 
member-fset-add, 
member_wf, 
decidable__fset-member, 
fset-filter_wf, 
bnot_wf, 
member-fset-filter, 
not_wf, 
assert_of_bnot, 
fset-extensionality, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
true_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
Error :lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
Error :equalityIsType1, 
because_Cache, 
Error :dependent_set_memberEquality_alt, 
instantiate, 
cumulativity, 
intEquality, 
imageElimination, 
applyLambdaEquality, 
Error :equalityIsType4, 
addEquality, 
applyEquality, 
universeEquality, 
baseClosed, 
lambdaFormation, 
Error :functionIsType, 
Error :productIsType, 
Error :inlFormation_alt, 
productEquality, 
Error :inrFormation_alt, 
imageMemberEquality, 
Error :unionIsType, 
hyp_replacement, 
independent_pairEquality, 
equalityElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].
    (list-powerset(eq;L)  \mmember{}  \{p:fset(fset(T))|  \mforall{}x:fset(T).  (x  \mmember{}  p  \mLeftarrow{}{}\mRightarrow{}  x  \msubseteq{}  L)\}  )
Date html generated:
2019_06_20-PM-02_00_41
Last ObjectModification:
2018_10_05-PM-04_22_23
Theory : finite!sets
Home
Index