Nuprl Lemma : int_seg_ind

i:ℤ. ∀j:{i 1...}.  ∀[E:{i..j-} ⟶ ℙ{u}]. (E[i]  (∀k:{i 1..j-}. (E[k 1]  E[k]))  {∀k:{i..j-}. E[k]})


Proof




Definitions occuring in Statement :  int_upper: {i...} int_seg: {i..j-} uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q guard: {T} member: t ∈ T int_upper: {i...} so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B wellfounded: WellFnd{i}(A;x,y.R[x; y]) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m le: A ≤ B less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] label: ...$L... t
Lemmas referenced :  int_seg_wf int_seg_properties int_upper_properties decidable__equal_int subtract_wf full-omega-unsat intformnot_wf intformeq_wf itermSubtract_wf itermVar_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__le intformand_wf intformle_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_add_lemma decidable__lt intformless_wf int_formula_prop_less_lemma le_wf less_than_wf int_upper_wf int_seg_well_founded_up upper_subtype_upper istype-false not-le-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-associates add-commutes le-add-cancel subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  sqequalRule Error :functionIsType,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin addEquality hypothesisEquality natural_numberEquality setElimination rename hypothesis applyEquality because_Cache productElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :dependent_set_memberEquality_alt,  equalityTransitivity equalitySymmetry independent_pairFormation Error :productIsType,  universeEquality instantiate minusEquality multiplyEquality Error :inhabitedIsType

Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}j:\{i  +  1...\}.
    \mforall{}[E:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbP{}\{u\}].  (E[i]  {}\mRightarrow{}  (\mforall{}k:\{i  +  1..j\msupminus{}\}.  (E[k  -  1]  {}\mRightarrow{}  E[k]))  {}\mRightarrow{}  \{\mforall{}k:\{i..j\msupminus{}\}.  E[k]\})



Date html generated: 2019_06_20-PM-01_15_26
Last ObjectModification: 2018_10_06-AM-11_22_04

Theory : int_2


Home Index