Nuprl Lemma : int_seg_ind
∀i:ℤ. ∀j:{i + 1...}.  ∀[E:{i..j-} ⟶ ℙ{u}]. (E[i] 
⇒ (∀k:{i + 1..j-}. (E[k - 1] 
⇒ E[k])) 
⇒ {∀k:{i..j-}. E[k]})
Proof
Definitions occuring in Statement : 
int_upper: {i...}
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
member: t ∈ T
, 
int_upper: {i...}
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
Lemmas referenced : 
int_seg_wf, 
int_seg_properties, 
int_upper_properties, 
decidable__equal_int, 
subtract_wf, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformand_wf, 
intformle_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
le_wf, 
less_than_wf, 
int_upper_wf, 
int_seg_well_founded_up, 
upper_subtype_upper, 
istype-false, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-associates, 
add-commutes, 
le-add-cancel, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
sqequalRule, 
Error :functionIsType, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
addEquality, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
applyEquality, 
because_Cache, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :dependent_set_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
Error :productIsType, 
universeEquality, 
instantiate, 
minusEquality, 
multiplyEquality, 
Error :inhabitedIsType
Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}j:\{i  +  1...\}.
    \mforall{}[E:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbP{}\{u\}].  (E[i]  {}\mRightarrow{}  (\mforall{}k:\{i  +  1..j\msupminus{}\}.  (E[k  -  1]  {}\mRightarrow{}  E[k]))  {}\mRightarrow{}  \{\mforall{}k:\{i..j\msupminus{}\}.  E[k]\})
Date html generated:
2019_06_20-PM-01_15_26
Last ObjectModification:
2018_10_06-AM-11_22_04
Theory : int_2
Home
Index