Nuprl Lemma : sum-unroll-1

[n:ℕ]. ∀[f:ℕn ⟶ ℤ].  (f[x] x < n) if (n =z 0) then else Σ(f[x] x < 1) f[n 1] fi )


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  so_lambda: λ2x.t[x] so_apply: x[s] bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} subtype_rel: A ⊆B decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int sum-as-primrec int_seg_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nat_properties nequal-le-implies zero-add subtract_wf int_upper_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf nat_wf int_subtype_base primrec0_lemma primrec-unroll intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule hypothesisEquality lambdaEquality applyEquality functionExtensionality dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination hypothesis_subsumption dependent_set_memberEquality independent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality computeAll sqequalAxiom functionEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].
    (\mSigma{}(f[x]  |  x  <  n)  \msim{}  if  (n  =\msubz{}  0)  then  0  else  \mSigma{}(f[x]  |  x  <  n  -  1)  +  f[n  -  1]  fi  )



Date html generated: 2017_04_14-AM-09_19_44
Last ObjectModification: 2017_02_27-PM-03_56_00

Theory : int_2


Home Index