Nuprl Lemma : assert-list_eq
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[as,bs:A List].  uiff(↑list_eq(eq;as;bs);as = bs ∈ (A List))
Proof
Definitions occuring in Statement : 
list_eq: list_eq(eq;as;bs), 
list: T List, 
deq: EqDecider(T), 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
deq: EqDecider(T), 
so_apply: x[s], 
implies: P ⇒ Q, 
list_eq: list_eq(eq;as;bs), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
assert: ↑b, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ, 
true: True, 
all: ∀x:A. B[x], 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
bfalse: ff, 
false: False, 
not: ¬A, 
bnot: ¬bb, 
band: p ∧b q, 
cand: A c∧ B, 
squash: ↓T, 
ge: i ≥ j , 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
eqof: eqof(d), 
guard: {T}
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
uiff_wf, 
assert_wf, 
list_eq_wf, 
equal_wf, 
nil_wf, 
equal-wf-base-T, 
null_nil_lemma, 
true_wf, 
equal-wf-base, 
null_cons_lemma, 
spread_cons_lemma, 
false_wf, 
btrue_wf, 
and_wf, 
null_wf, 
bfalse_wf, 
btrue_neq_bfalse, 
cons_wf, 
assert_witness, 
equal-wf-T-base, 
band_wf, 
reduce_hd_cons_lemma, 
hd_wf, 
squash_wf, 
ge_wf, 
length_wf, 
length_cons_ge_one, 
subtype_rel_list, 
top_wf, 
iff_transitivity, 
eqof_wf, 
iff_weakening_uiff, 
assert_of_band, 
safe-assert-deq, 
deq_wf, 
reduce_tl_cons_lemma, 
tl_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
setElimination, 
rename, 
independent_functionElimination, 
because_Cache, 
baseClosed, 
independent_pairFormation, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
dependent_set_memberEquality, 
applyLambdaEquality, 
independent_pairEquality, 
applyEquality, 
imageElimination, 
independent_isectElimination, 
imageMemberEquality, 
addLevel, 
productEquality, 
universeEquality, 
promote_hyp
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[as,bs:A  List].    uiff(\muparrow{}list\_eq(eq;as;bs);as  =  bs)
Date html generated:
2018_05_21-PM-00_20_12
Last ObjectModification:
2018_05_19-AM-07_00_23
Theory : list_0
Home
Index