Nuprl Lemma : length-nat-if-has-value

l:Base. ((||l||)↓  (||l|| ∈ ℕ))


Proof




Definitions occuring in Statement :  length: ||as|| nat: has-value: (a)↓ all: x:A. B[x] implies:  Q member: t ∈ T base: Base
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T length: ||as|| list_ind: list_ind uall: [x:A]. B[x] nat: false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B top: Top not: ¬A decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m le: A ≤ B less_than': less_than'(a;b) true: True nat_plus: + has-value: (a)↓ sq_stable: SqStable(P) squash: T
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf has-value_wf_base int_subtype_base base_wf fun_exp0_lemma strictness-apply bottom_diverge decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel fun_exp_unroll_1 has-value-implies-dec-ispair-2 top_wf value-type-has-value int-value-type nat_wf add_nat_wf le_wf sq_stable__le equal_wf has-value-implies-dec-isaxiom-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution sqequalRule hypothesis compactness thin introduction extract_by_obid isectElimination hypothesisEquality setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry baseApply closedConclusion baseClosed applyEquality isect_memberEquality voidEquality unionElimination independent_pairFormation productElimination addEquality intEquality minusEquality because_Cache dependent_set_memberEquality callbyvalueCallbyvalue callbyvalueReduce callbyvalueAdd imageMemberEquality imageElimination

Latex:
\mforall{}l:Base.  ((||l||)\mdownarrow{}  {}\mRightarrow{}  (||l||  \mmember{}  \mBbbN{}))



Date html generated: 2017_04_14-AM-08_35_32
Last ObjectModification: 2017_02_27-PM-03_29_02

Theory : list_0


Home Index