Nuprl Lemma : flip-conjugation

[n:ℕ]. ∀[k:ℕn]. ∀[j:ℕk]. ∀[l:ℕk].  ((j, l) ((k, l) ((j, k) (k, l))) ∈ (ℕn ⟶ ℕn))


Proof




Definitions occuring in Statement :  flip: (i, j) compose: g int_seg: {i..j-} nat: uall: [x:A]. B[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: int_seg: {i..j-} flip: (i, j) compose: g lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top prop: nequal: a ≠ b ∈  bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b ge: i ≥  decidable: Dec(P)
Lemmas referenced :  int_seg_wf subtract_wf nat_wf eq_int_wf bool_wf full-omega-unsat intformand_wf intformeq_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf itermAdd_wf intformle_wf itermConstant_wf int_term_value_add_lemma int_formula_prop_le_lemma int_term_value_constant_lemma ifthenelse_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int intformnot_wf int_formula_prop_not_lemma int_seg_properties nat_properties decidable__le decidable__lt itermSubtract_wf int_term_value_subtract_lemma lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality because_Cache hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality sqequalRule isect_memberEquality axiomEquality dependent_set_memberEquality productElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation addEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[k:\mBbbN{}n].  \mforall{}[j:\mBbbN{}k].  \mforall{}[l:\mBbbN{}n  -  k].    ((j,  k  +  l)  =  ((k,  k  +  l)  o  ((j,  k)  o  (k,  k  +  l))))



Date html generated: 2018_05_21-PM-00_41_12
Last ObjectModification: 2018_05_19-AM-06_48_36

Theory : list_1


Home Index