Nuprl Lemma : iseg_filter
∀[T:Type]
  ∀P:T ⟶ 𝔹. ∀L_1,L_2:T List.  (L_2 ≤ filter(P;L_1) ⇒ (∃L_3:T List. (L_3 ≤ L_1 ∧ (L_2 = filter(P;L_3) ∈ (T List)))))
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2, 
filter: filter(P;l), 
list: T List, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
uimplies: b supposing a, 
and: P ∧ Q, 
top: Top, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
uiff: uiff(P;Q), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
rev_implies: P ⇐ Q, 
squash: ↓T, 
true: True, 
not: ¬A, 
false: False
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
iseg_wf, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
l_member_wf, 
subtype_rel_self, 
set_wf, 
exists_wf, 
equal_wf, 
filter_nil_lemma, 
filter_cons_lemma, 
nil_wf, 
iseg_weakening, 
iseg_nil, 
assert_of_null, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
cons_wf, 
nil_iseg, 
equal-wf-base-T, 
cons_iseg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
functionEquality, 
applyEquality, 
because_Cache, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
productEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
universeEquality, 
dependent_pairFormation, 
independent_pairFormation, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
unionElimination, 
equalityElimination, 
cumulativity, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}[T:Type]
    \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L$_{1}$,L$_{2}$:T  List.    (L$_{2\mbackslash{}ff\000C7d$  \mleq{}  filter(P;L$_{1}$)  {}\mRightarrow{}  (\mexists{}L$_{3}$:T  List.  (L$\mbackslash{}ff5\000Cf{3}$  \mleq{}  L$_{1}$  \mwedge{}  (L$_{2}$  =  filter(P;L$\mbackslash{}ff5\000Cf{3}$)))))
Date html generated:
2019_06_20-PM-01_29_18
Last ObjectModification:
2018_09_17-PM-06_52_30
Theory : list_1
Home
Index