Nuprl Lemma : l_before_no_repeats
∀[T:Type]. ∀L:T List. ∀i,j:ℕ||L||.  uiff(j < i;L[j] before L[i] ∈ L) supposing no_repeats(T;L)
Proof
Definitions occuring in Statement : 
l_before: x before y ∈ l
, 
no_repeats: no_repeats(T;l)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
sq_type: SQType(T)
, 
l_before: x before y ∈ l
, 
sublist: L1 ⊆ L2
, 
no_repeats: no_repeats(T;l)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtype_rel: A ⊆r B
, 
ge: i ≥ j 
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
Lemmas referenced : 
l_before_antisymmetry, 
l_before_transitivity, 
int_seg_subtype_nat, 
nat_wf, 
subtype_rel_dep_function, 
increasing_implies, 
le_wf, 
nat_properties, 
length_wf_nat, 
non_neg_length, 
lelt_wf, 
false_wf, 
length_of_nil_lemma, 
length_of_cons_lemma, 
int_subtype_base, 
subtype_base_sq, 
list_wf, 
int_seg_wf, 
no_repeats_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
decidable__le, 
length_wf, 
select_wf, 
l_before_wf, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_or_lemma, 
int_formula_prop_not_lemma, 
intformeq_wf, 
itermVar_wf, 
intformless_wf, 
intformor_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
decidable__lt, 
equal_wf, 
or_wf, 
decidable__or, 
int_seg_properties, 
less_than_wf, 
l_before_select, 
member-less_than, 
no_repeats_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
rename, 
independent_pairFormation, 
setElimination, 
independent_isectElimination, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
intEquality, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
cumulativity, 
imageElimination, 
universeEquality, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
setEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}i,j:\mBbbN{}||L||.    uiff(j  <  i;L[j]  before  L[i]  \mmember{}  L)  supposing  no\_repeats(T;L)
Date html generated:
2016_05_14-AM-07_46_46
Last ObjectModification:
2016_01_15-AM-08_34_23
Theory : list_1
Home
Index