Nuprl Lemma : l_before_no_repeats

[T:Type]. ∀L:T List. ∀i,j:ℕ||L||.  uiff(j < i;L[j] before L[i] ∈ L) supposing no_repeats(T;L)


Proof




Definitions occuring in Statement :  l_before: before y ∈ l no_repeats: no_repeats(T;l) select: L[n] length: ||as|| list: List int_seg: {i..j-} less_than: a < b uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q uiff: uiff(P;Q) and: P ∧ Q int_seg: {i..j-} prop: guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top less_than: a < b squash: T sq_type: SQType(T) l_before: before y ∈ l sublist: L1 ⊆ L2 no_repeats: no_repeats(T;l) le: A ≤ B less_than': less_than'(a;b) true: True subtype_rel: A ⊆B ge: i ≥  nat: so_lambda: λ2x.t[x] so_apply: x[s] select: L[n] cons: [a b] subtract: m
Lemmas referenced :  l_before_antisymmetry l_before_transitivity int_seg_subtype_nat nat_wf subtype_rel_dep_function increasing_implies le_wf nat_properties length_wf_nat non_neg_length lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma int_subtype_base subtype_base_sq list_wf int_seg_wf no_repeats_wf int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma itermConstant_wf intformle_wf intformand_wf decidable__le length_wf select_wf l_before_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_or_lemma int_formula_prop_not_lemma intformeq_wf itermVar_wf intformless_wf intformor_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int decidable__lt equal_wf or_wf decidable__or int_seg_properties less_than_wf l_before_select member-less_than no_repeats_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis rename independent_pairFormation setElimination independent_isectElimination because_Cache dependent_functionElimination productElimination intEquality unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll cumulativity imageElimination universeEquality instantiate equalityTransitivity equalitySymmetry applyEquality dependent_set_memberEquality imageMemberEquality baseClosed setEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}i,j:\mBbbN{}||L||.    uiff(j  <  i;L[j]  before  L[i]  \mmember{}  L)  supposing  no\_repeats(T;L)



Date html generated: 2016_05_14-AM-07_46_46
Last ObjectModification: 2016_01_15-AM-08_34_23

Theory : list_1


Home Index