Nuprl Lemma : last-concat
∀[T:Type]
  ∀ll:T List List
    ∃ll1:T List List
     ∃l1:T List
      ((concat(ll) = (concat(ll1) @ l1 @ [last(concat(ll))]) ∈ (T List)) ∧ ll1 @ [l1 @ [last(concat(ll))]] ≤ ll) 
    supposing ¬(concat(ll) = [] ∈ (T List))
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
last: last(L)
, 
concat: concat(ll)
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
top: Top
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
equal-wf-base, 
list_wf, 
nil_wf, 
not_wf, 
decidable__assert, 
null_wf, 
concat_wf, 
assert_of_null, 
equal-wf-T-base, 
list_induction, 
isect_wf, 
exists_wf, 
equal_wf, 
append_wf, 
cons_wf, 
last_wf, 
assert_wf, 
length_wf, 
length-append, 
iseg_wf, 
concat-nil, 
concat-cons, 
subtype_rel_list, 
top_wf, 
append_nil_sq, 
list_ind_nil_lemma, 
last_lemma, 
cons_iseg, 
nil_iseg, 
band_wf, 
length_of_nil_lemma, 
null_append, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
append_assoc_sq, 
squash_wf, 
true_wf, 
last_append, 
list_ind_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesis, 
baseClosed, 
because_Cache, 
rename, 
independent_functionElimination, 
isect_memberEquality, 
voidEquality, 
unionElimination, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
productEquality, 
addLevel, 
impliesFunctionality, 
levelHypothesis, 
applyLambdaEquality, 
universeEquality, 
applyEquality, 
hyp_replacement, 
dependent_pairFormation, 
independent_pairFormation, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}[T:Type]
    \mforall{}ll:T  List  List
        \mexists{}ll1:T  List  List
          \mexists{}l1:T  List
            ((concat(ll)  =  (concat(ll1)  @  l1  @  [last(concat(ll))]))
            \mwedge{}  ll1  @  [l1  @  [last(concat(ll))]]  \mleq{}  ll) 
        supposing  \mneg{}(concat(ll)  =  [])
Date html generated:
2017_04_17-AM-08_51_28
Last ObjectModification:
2017_02_27-PM-05_09_33
Theory : list_1
Home
Index