Nuprl Lemma : last-concat

[T:Type]
  ∀ll:T List List
    ∃ll1:T List List
     ∃l1:T List
      ((concat(ll) (concat(ll1) l1 [last(concat(ll))]) ∈ (T List)) ∧ ll1 [l1 [last(concat(ll))]] ≤ ll) 
    supposing ¬(concat(ll) [] ∈ (T List))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 last: last(L) concat: concat(ll) append: as bs cons: [a b] nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False uall: [x:A]. B[x] prop: top: Top all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B exists: x:A. B[x] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q squash: T true: True
Lemmas referenced :  equal-wf-base list_wf nil_wf not_wf decidable__assert null_wf concat_wf assert_of_null equal-wf-T-base list_induction isect_wf exists_wf equal_wf append_wf cons_wf last_wf assert_wf length_wf length-append iseg_wf concat-nil concat-cons subtype_rel_list top_wf append_nil_sq list_ind_nil_lemma last_lemma cons_iseg nil_iseg band_wf length_of_nil_lemma null_append iff_transitivity iff_weakening_uiff assert_of_band append_assoc_sq squash_wf true_wf last_append list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination extract_by_obid isectElimination cumulativity hypothesis baseClosed because_Cache rename independent_functionElimination isect_memberEquality voidEquality unionElimination productElimination independent_isectElimination lambdaFormation equalityTransitivity equalitySymmetry promote_hyp productEquality addLevel impliesFunctionality levelHypothesis applyLambdaEquality universeEquality applyEquality hyp_replacement dependent_pairFormation independent_pairFormation imageElimination natural_numberEquality imageMemberEquality

Latex:
\mforall{}[T:Type]
    \mforall{}ll:T  List  List
        \mexists{}ll1:T  List  List
          \mexists{}l1:T  List
            ((concat(ll)  =  (concat(ll1)  @  l1  @  [last(concat(ll))]))
            \mwedge{}  ll1  @  [l1  @  [last(concat(ll))]]  \mleq{}  ll) 
        supposing  \mneg{}(concat(ll)  =  [])



Date html generated: 2017_04_17-AM-08_51_28
Last ObjectModification: 2017_02_27-PM-05_09_33

Theory : list_1


Home Index