Nuprl Lemma : last-filter1
∀[A:Type]. ∀[P:A ⟶ 𝔹]. ∀[L:A List].
  (last(filter(P;L)) = last(L) ∈ A) supposing ((↑(P last(L))) and (¬↑null(filter(P;L))))
Proof
Definitions occuring in Statement : 
last: last(L), 
null: null(as), 
filter: filter(P;l), 
list: T List, 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
null: null(as), 
filter: filter(P;l), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
nil: [], 
it: ⋅, 
btrue: tt, 
true: True, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
false: False, 
top: Top, 
bfalse: ff, 
bool: 𝔹, 
unit: Unit, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb
Lemmas referenced : 
assert_of_null, 
assert_wf, 
null_wf, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
l_member_wf, 
subtype_rel_self, 
set_wf, 
list_induction, 
not_wf, 
last_wf, 
equal_wf, 
null_nil_lemma, 
filter_nil_lemma, 
true_wf, 
null_cons_lemma, 
filter_cons_lemma, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
list_wf, 
subtype_rel_list, 
top_wf, 
member-implies-null-eq-bfalse, 
and_wf, 
btrue_neq_bfalse, 
equal-wf-T-base, 
btrue_wf, 
false_wf, 
last_cons2, 
null-filter2, 
last_member, 
l_all_fwd
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lambdaFormation, 
introduction, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
natural_numberEquality, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
cumulativity, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
setEquality, 
setElimination, 
rename, 
because_Cache, 
voidElimination, 
promote_hyp, 
functionEquality, 
functionExtensionality, 
dependent_functionElimination, 
isect_memberEquality, 
voidEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
dependent_pairFormation, 
instantiate, 
universeEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
baseClosed, 
addLevel, 
impliesFunctionality
Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:A  List].
    (last(filter(P;L))  =  last(L))  supposing  ((\muparrow{}(P  last(L)))  and  (\mneg{}\muparrow{}null(filter(P;L))))
Date html generated:
2017_04_17-AM-07_52_55
Last ObjectModification:
2017_02_27-PM-04_26_08
Theory : list_1
Home
Index