Nuprl Lemma : null-filter2
∀[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List].  uiff(↑null(filter(P;L));(∀x∈L.¬↑(P x)))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x]), 
null: null(as), 
filter: filter(P;l), 
list: T List, 
assert: ↑b, 
bool: 𝔹, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
not: ¬A, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
all: ∀x:A. B[x], 
top: Top, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
not: ¬A, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
false: False, 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
sq_stable: SqStable(P), 
lelt: i ≤ j < k, 
squash: ↓T
Lemmas referenced : 
list_induction, 
assert_wf, 
null_wf, 
filter_wf5, 
l_all_wf, 
not_wf, 
l_member_wf, 
list_wf, 
filter_nil_lemma, 
null_nil_lemma, 
l_all_nil, 
true_wf, 
filter_cons_lemma, 
l_all_cons, 
assert_elim, 
bool_wf, 
eqtt_to_assert, 
cons_wf, 
subtype_rel_dep_function, 
subtype_rel_self, 
set_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
null_cons_lemma, 
bfalse_wf, 
and_wf, 
ifthenelse_wf, 
btrue_neq_bfalse, 
assert-bnot, 
null_filter, 
assert_witness, 
not_assert_elim, 
select_wf, 
sq_stable__le, 
int_seg_wf, 
length_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
applyEquality, 
because_Cache, 
hypothesis, 
functionExtensionality, 
setElimination, 
rename, 
setEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
productElimination, 
addLevel, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
levelHypothesis, 
dependent_set_memberEquality, 
applyLambdaEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
universeEquality, 
independent_pairEquality, 
hyp_replacement
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].    uiff(\muparrow{}null(filter(P;L));(\mforall{}x\mmember{}L.\mneg{}\muparrow{}(P  x)))
Date html generated:
2017_04_14-AM-08_52_20
Last ObjectModification:
2017_02_27-PM-03_36_49
Theory : list_0
Home
Index