Nuprl Lemma : null-filter2

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List].  uiff(↑null(filter(P;L));(∀x∈L.¬↑(P x)))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) null: null(as) filter: filter(P;l) list: List assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q prop: subtype_rel: A ⊆B so_apply: x[s] all: x:A. B[x] top: Top assert: b ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B not: ¬A bool: 𝔹 unit: Unit it: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb false: False l_all: (∀x∈L.P[x]) int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k squash: T
Lemmas referenced :  list_induction assert_wf null_wf filter_wf5 l_all_wf not_wf l_member_wf list_wf filter_nil_lemma null_nil_lemma l_all_nil true_wf filter_cons_lemma l_all_cons assert_elim bool_wf eqtt_to_assert cons_wf subtype_rel_dep_function subtype_rel_self set_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base null_cons_lemma bfalse_wf and_wf ifthenelse_wf btrue_neq_bfalse assert-bnot null_filter assert_witness not_assert_elim select_wf sq_stable__le int_seg_wf length_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality cumulativity applyEquality because_Cache hypothesis functionExtensionality setElimination rename setEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation productElimination addLevel unionElimination equalityElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp instantiate levelHypothesis dependent_set_memberEquality applyLambdaEquality natural_numberEquality imageMemberEquality baseClosed imageElimination universeEquality independent_pairEquality hyp_replacement

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].    uiff(\muparrow{}null(filter(P;L));(\mforall{}x\mmember{}L.\mneg{}\muparrow{}(P  x)))



Date html generated: 2017_04_14-AM-08_52_20
Last ObjectModification: 2017_02_27-PM-03_36_49

Theory : list_0


Home Index