Nuprl Lemma : list_accum_filter

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[l:T List]. ∀[f,y:Top].
  (accumulate (with value and list item b):
    f[a;b]
   over list:
     filter(λb.P[b];l)
   with starting value:
    y) accumulate (with value and list item b):
          if P[b] then f[a;b] else fi 
         over list:
           l
         with starting value:
          y))


Proof




Definitions occuring in Statement :  filter: filter(P;l) list_accum: list_accum list: List ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] colength: colength(L) decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf top_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases filter_nil_lemma list_accum_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int filter_cons_lemma list_accum_cons_lemma bool_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom cumulativity applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination functionExtensionality equalityElimination functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[l:T  List].  \mforall{}[f,y:Top].
    (accumulate  (with  value  a  and  list  item  b):
        f[a;b]
      over  list:
          filter(\mlambda{}b.P[b];l)
      with  starting  value:
        y)  \msim{}  accumulate  (with  value  a  and  list  item  b):
                    if  P[b]  then  f[a;b]  else  a  fi 
                  over  list:
                      l
                  with  starting  value:
                    y))



Date html generated: 2017_04_14-AM-09_24_31
Last ObjectModification: 2017_02_27-PM-03_59_09

Theory : list_1


Home Index