Nuprl Lemma : sorted-by-unique
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
(∀[sa,sb:T List].
(sa = sb ∈ (T List)) supposing
(no_repeats(T;sa) and
sorted-by(R;sa) and
no_repeats(T;sb) and
sorted-by(R;sb) and
set-equal(T;sa;sb))) supposing
(AntiSym(T;a,b.R a b) and
Trans(T;a,b.R a b))
Proof
Definitions occuring in Statement :
sorted-by: sorted-by(R;L)
,
set-equal: set-equal(T;x;y)
,
no_repeats: no_repeats(T;l)
,
list: T List
,
anti_sym: AntiSym(T;x,y.R[x; y])
,
trans: Trans(T;x,y.E[x; y])
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
top: Top
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
or: P ∨ Q
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
cons: [a / b]
,
bfalse: ff
,
false: False
,
not: ¬A
,
uiff: uiff(P;Q)
,
set-equal: set-equal(T;x;y)
,
rev_implies: P
⇐ Q
,
guard: {T}
,
anti_sym: AntiSym(T;x,y.R[x; y])
,
cand: A c∧ B
,
squash: ↓T
,
true: True
Lemmas referenced :
list_induction,
uall_wf,
list_wf,
isect_wf,
set-equal_wf,
sorted-by_wf,
subtype_rel_dep_function,
l_member_wf,
subtype_rel_self,
set_wf,
no_repeats_wf,
equal_wf,
anti_sym_wf,
trans_wf,
nil_wf,
sorted-by_wf_nil,
set-equal-nil,
list-cases,
null_nil_lemma,
product_subtype_list,
null_cons_lemma,
cons_wf,
set-equal-nil2,
assert_elim,
null_wf,
bfalse_wf,
btrue_neq_bfalse,
no_repeats_cons,
sorted-by-cons,
cons_member,
l_all_iff,
or_wf,
squash_wf,
true_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
sqequalRule,
lambdaEquality,
cumulativity,
hypothesis,
because_Cache,
applyEquality,
instantiate,
functionEquality,
universeEquality,
setEquality,
independent_isectElimination,
setElimination,
rename,
lambdaFormation,
independent_functionElimination,
dependent_functionElimination,
isect_memberEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionExtensionality,
voidElimination,
voidEquality,
productElimination,
unionElimination,
promote_hyp,
hypothesis_subsumption,
inlFormation,
independent_pairFormation,
inrFormation,
hyp_replacement,
Error :applyLambdaEquality,
imageElimination,
natural_numberEquality,
imageMemberEquality,
baseClosed
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
(\mforall{}[sa,sb:T List].
(sa = sb) supposing
(no\_repeats(T;sa) and
sorted-by(R;sa) and
no\_repeats(T;sb) and
sorted-by(R;sb) and
set-equal(T;sa;sb))) supposing
(AntiSym(T;a,b.R a b) and
Trans(T;a,b.R a b))
Date html generated:
2016_10_21-AM-10_11_26
Last ObjectModification:
2016_07_12-AM-05_30_13
Theory : list_1
Home
Index