Nuprl Lemma : sorted-by-cons

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x:T. ∀L:T List.  (sorted-by(R;[x L]) ⇐⇒ sorted-by(R;L) ∧ (∀z∈L.R z))


Proof




Definitions occuring in Statement :  sorted-by: sorted-by(R;L) l_all: (∀x∈L.P[x]) cons: [a b] list: List uall: [x:A]. B[x] prop: all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  sorted-by: sorted-by(R;L) all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q int_seg: {i..j-} prop: so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A ge: i ≥  le: A ≤ B so_apply: x[s] rev_implies:  Q less_than: a < b squash: T uiff: uiff(P;Q) subtract: m cand: c∧ B sq_type: SQType(T) subtype_rel: A ⊆B l_all: (∀x∈L.P[x]) less_than': less_than'(a;b) select: L[n] cons: [a b]
Lemmas referenced :  length_of_cons_lemma int_seg_wf length_wf all_wf select_wf cons_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf non_neg_length decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma l_all_wf l_member_wf list_wf add-member-int_seg2 subtract_wf itermSubtract_wf int_term_value_subtract_lemma lelt_wf add-subtract-cancel add-associates add-swap add-commutes zero-add squash_wf le_wf less_than_wf and_wf equal_wf subtype_base_sq int_subtype_base select_cons_tl iff_weakening_equal false_wf select-cons-tl decidable__equal_int intformeq_wf int_formula_prop_eq_lemma add-is-int-iff
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation lambdaFormation independent_pairFormation isectElimination natural_numberEquality setElimination rename hypothesisEquality cumulativity addEquality lambdaEquality because_Cache applyEquality functionExtensionality independent_isectElimination productElimination unionElimination dependent_pairFormation int_eqEquality intEquality computeAll productEquality imageElimination setEquality functionEquality universeEquality dependent_set_memberEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed instantiate independent_functionElimination hyp_replacement Error :applyLambdaEquality,  pointwiseFunctionality promote_hyp baseApply closedConclusion

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}x:T.  \mforall{}L:T  List.    (sorted-by(R;[x  /  L])  \mLeftarrow{}{}\mRightarrow{}  sorted-by(R;L)  \mwedge{}  (\mforall{}z\mmember{}L.R  x  z))



Date html generated: 2016_10_21-AM-10_11_02
Last ObjectModification: 2016_07_12-AM-05_30_05

Theory : list_1


Home Index