Nuprl Lemma : two-squares-iff
∀x:ℕ
  (∃y,z:ℕ. (((y * y) + (z * z)) = x ∈ ℤ)
  
⇐⇒ ∃y:ℕisqrt(x) + 1. ((isqrt(x - y * y) * isqrt(x - y * y)) = (x - y * y) ∈ ℤ))
Proof
Definitions occuring in Statement : 
isqrt: isqrt(x)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
multiply: n * m
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
ge: i ≥ j 
, 
guard: {T}
, 
sq_type: SQType(T)
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
Lemmas referenced : 
isqrt-property, 
isqrt_wf, 
istype-int, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
int_seg_wf, 
lelt_wf, 
less_than_wf, 
nat_wf, 
mul_bounds_1a, 
decidable__lt, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
mul_preserves_le, 
isqrt-of-square, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
decidable__equal_int, 
subtype_base_sq, 
false_wf, 
int_seg_subtype_nat, 
int_seg_properties, 
subtract_wf, 
equal_wf, 
exists_wf, 
multiply-is-int-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
independent_pairFormation, 
sqequalRule, 
Error :productIsType, 
because_Cache, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
independent_isectElimination, 
productElimination, 
Error :universeIsType, 
addEquality, 
setElimination, 
rename, 
multiplyEquality, 
Error :equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation, 
unionElimination, 
dependent_set_memberEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
lambdaEquality, 
approximateComputation, 
applyLambdaEquality, 
cumulativity, 
instantiate, 
lambdaFormation, 
promote_hyp, 
pointwiseFunctionality
Latex:
\mforall{}x:\mBbbN{}
    (\mexists{}y,z:\mBbbN{}.  (((y  *  y)  +  (z  *  z))  =  x)
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}y:\mBbbN{}isqrt(x)  +  1.  ((isqrt(x  -  y  *  y)  *  isqrt(x  -  y  *  y))  =  (x  -  y  *  y)))
Date html generated:
2019_06_20-PM-02_37_21
Last ObjectModification:
2019_06_12-PM-00_26_06
Theory : num_thy_1
Home
Index