Nuprl Lemma : rP_to_poly-int_term_to_rP
∀[t:int_term()]. ∀[s:iPolynomial() List].  (rP_to_poly(s;int_term_to_rP(t)) ~ [int_term_to_ipoly(t) / s])
Proof
Definitions occuring in Statement : 
rP_to_poly: rP_to_poly(stack;L)
, 
int_term_to_rP: int_term_to_rP(t)
, 
int_term_to_ipoly: int_term_to_ipoly(t)
, 
iPolynomial: iPolynomial()
, 
int_term: int_term()
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
and: P ∧ Q
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
iPolynomial: iPolynomial()
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
lelt: i ≤ j < k
, 
squash: ↓T
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
iMonomial: iMonomial()
, 
prop: ℙ
, 
int_nzero: ℤ-o
, 
subtype_rel: A ⊆r B
, 
int_term_to_ipoly: int_term_to_ipoly(t)
, 
int_term_to_rP: int_term_to_rP(t)
, 
itermConstant: "const"
, 
int_term_ind: int_term_ind, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
rP_to_poly: rP_to_poly(stack;L)
, 
cons: [a / b]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
itermVar: vvar
, 
itermAdd: left (+) right
, 
itermSubtract: left (-) right
, 
itermMultiply: left (*) right
, 
itermMinus: "-"num
, 
list_ind: list_ind, 
spreadn: spread3, 
nil: []
, 
it: ⋅
Lemmas referenced : 
int_term_subtype_base, 
list_subtype_base, 
iPolynomial_wf, 
set_subtype_base, 
list_wf, 
iMonomial_wf, 
all_wf, 
int_seg_wf, 
length_wf, 
imonomial-less_wf, 
select_wf, 
sq_stable__le, 
less_than_transitivity2, 
le_weakening2, 
product_subtype_base, 
int_nzero_wf, 
sorted_wf, 
subtype_rel_self, 
nequal_wf, 
int_subtype_base, 
int_term_wf, 
int_term-induction, 
sqequal-wf-base, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
spread_cons_lemma, 
eager-append-is-append, 
int_term_to_rP_wf, 
subtype_rel_list, 
top_wf, 
cons_wf, 
nil_wf, 
append_assoc, 
append_wf, 
eager-append_wf, 
int_term_to_ipoly_wf, 
append_back_nil
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
introduction, 
extract_by_obid, 
hypothesis, 
independent_pairFormation, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
because_Cache, 
setElimination, 
rename, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
setEquality, 
intEquality, 
lambdaFormation, 
isect_memberFormation, 
sqequalAxiom, 
baseApply, 
closedConclusion, 
applyEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[t:int\_term()].  \mforall{}[s:iPolynomial()  List].
    (rP\_to\_poly(s;int\_term\_to\_rP(t))  \msim{}  [int\_term\_to\_ipoly(t)  /  s])
Date html generated:
2017_09_29-PM-05_54_46
Last ObjectModification:
2017_05_12-PM-11_39_17
Theory : omega
Home
Index