Nuprl Lemma : int_term_subtype_base

int_term() ⊆Base


Proof




Definitions occuring in Statement :  int_term: int_term() subtype_rel: A ⊆B base: Base
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True ext-eq: A ≡ B bool: 𝔹 unit: Unit it: btrue: tt sq_type: SQType(T) eq_atom: =a y ifthenelse: if then else fi  itermConstant: "const" int_term_size: int_term_size(p) bfalse: ff exists: x:A. B[x] bnot: ¬bb assert: b itermVar: vvar itermAdd: left (+) right pi1: fst(t) pi2: snd(t) cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] itermSubtract: left (-) right itermMultiply: left (*) right itermMinus: "-"num less_than: a < b sq_stable: SqStable(P) squash: T nat_plus: +
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf le_wf int_term_size_wf int_term_wf int_seg_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int int_seg_subtype le_weakening int_seg_properties int_term-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base int_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom nat_wf set_subtype_base add-is-int-iff not-le-2 decidable__lt not-lt-2 add-mul-special zero-mul le-add-cancel-alt lelt_wf not-equal-2 sq_stable__le le_reflexive one-mul two-mul mul-distributes-right omega-shadow mul-distributes mul-commutes mul-associates mul-swap minus-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality cut thin isect_memberFormation introduction lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination dependent_functionElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry applyEquality because_Cache productElimination unionElimination independent_pairFormation addEquality voidEquality intEquality minusEquality hypothesis_subsumption dependent_set_memberEquality promote_hyp tokenEquality equalityElimination instantiate cumulativity atomEquality baseApply closedConclusion baseClosed dependent_pairFormation sqequalIntensionalEquality applyLambdaEquality imageMemberEquality imageElimination multiplyEquality

Latex:
int\_term()  \msubseteq{}r  Base



Date html generated: 2017_09_29-PM-05_51_52
Last ObjectModification: 2017_05_12-PM-08_18_07

Theory : omega


Home Index