Nuprl Lemma : n-tuple-decomp
∀[n:ℕ]. (n-tuple(n) ~ if (n =z 0) then Unit if (n =z 1) then Top else Top × n-tuple(n - 1) fi )
Proof
Definitions occuring in Statement : 
n-tuple: n-tuple(n), 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
uall: ∀[x:A]. B[x], 
top: Top, 
unit: Unit, 
product: x:A × B[x], 
subtract: n - m, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
n-tuple: n-tuple(n), 
tuple-type: tuple-type(L), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
upto: upto(n), 
from-upto: [n, m), 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
bfalse: ff, 
eq_int: (i =z j), 
subtract: n - m, 
btrue: tt, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
decidable: Dec(P), 
or: P ∨ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
nat_plus: ℕ+, 
nequal: a ≠ b ∈ T , 
compose: f o g
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
map_nil_lemma, 
list_ind_nil_lemma, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
upto_decomp2, 
map_cons_lemma, 
list_ind_cons_lemma, 
null-map, 
null-upto, 
le_wf, 
map-map, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
sqequalAxiom, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
because_Cache, 
promote_hyp, 
instantiate, 
cumulativity, 
dependent_set_memberEquality
Latex:
\mforall{}[n:\mBbbN{}].  (n-tuple(n)  \msim{}  if  (n  =\msubz{}  0)  then  Unit  if  (n  =\msubz{}  1)  then  Top  else  Top  \mtimes{}  n-tuple(n  -  1)  fi  )
Date html generated:
2018_05_21-PM-00_52_19
Last ObjectModification:
2018_05_19-AM-06_40_12
Theory : tuples
Home
Index