Nuprl Lemma : n-tuple-decomp

[n:ℕ]. (n-tuple(n) if (n =z 0) then Unit if (n =z 1) then Top else Top × n-tuple(n 1) fi )


Proof




Definitions occuring in Statement :  n-tuple: n-tuple(n) nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top unit: Unit product: x:A × B[x] subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  n-tuple: n-tuple(n) tuple-type: tuple-type(L) uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: upto: upto(n) from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j bfalse: ff eq_int: (i =z j) subtract: m btrue: tt so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nat_plus: + nequal: a ≠ b ∈  compose: g
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf map_nil_lemma list_ind_nil_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int upto_decomp2 map_cons_lemma list_ind_cons_lemma null-map null-upto le_wf map-map nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation sqequalAxiom unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination because_Cache promote_hyp instantiate cumulativity dependent_set_memberEquality

Latex:
\mforall{}[n:\mBbbN{}].  (n-tuple(n)  \msim{}  if  (n  =\msubz{}  0)  then  Unit  if  (n  =\msubz{}  1)  then  Top  else  Top  \mtimes{}  n-tuple(n  -  1)  fi  )



Date html generated: 2018_05_21-PM-00_52_19
Last ObjectModification: 2018_05_19-AM-06_40_12

Theory : tuples


Home Index