Nuprl Lemma : tuple_wf_ntuple

[n:ℕ]. ∀[F:Top].  (tuple(n;i.F[i]) ∈ n-tuple(n))


Proof




Definitions occuring in Statement :  tuple: tuple(n;i.F[i]) n-tuple: n-tuple(n) nat: uall: [x:A]. B[x] top: Top so_apply: x[s] member: t ∈ T
Definitions unfolded in proof :  member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: uall: [x:A]. B[x] top: Top eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥ 
Lemmas referenced :  false_wf le_wf it_wf top_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_properties ge_wf less_than_wf n-tuple-decomp tuple-decomp subtract_wf itermSubtract_wf int_term_value_subtract_lemma nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation hypothesis cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality isect_memberFormation axiomEquality equalityTransitivity equalitySymmetry because_Cache dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll equalityElimination productElimination promote_hyp instantiate cumulativity independent_functionElimination independent_pairEquality setElimination rename intWeakElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[F:Top].    (tuple(n;i.F[i])  \mmember{}  n-tuple(n))



Date html generated: 2017_04_17-AM-09_29_18
Last ObjectModification: 2017_02_27-PM-05_29_11

Theory : tuples


Home Index