Nuprl Lemma : tuple-decomp

[n:ℕ]. ∀[F:Top].  (tuple(n;i.F[i]) if (n =z 0) then ⋅ if (n =z 1) then F[0] else <F[0], tuple(n 1;i.F[i 1])> fi )


Proof




Definitions occuring in Statement :  tuple: tuple(n;i.F[i]) nat: ifthenelse: if then else fi  eq_int: (i =z j) it: uall: [x:A]. B[x] top: Top so_apply: x[s] pair: <a, b> subtract: m add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  tuple: tuple(n;i.F[i]) uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: upto: upto(n) from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j bfalse: ff eq_int: (i =z j) subtract: m btrue: tt so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True append: as bs bool: 𝔹 unit: Unit it: subtype_rel: A ⊆B uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q compose: g so_lambda: λ2x.t[x] so_apply: x[s] bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf top_wf map_nil_lemma list_ind_nil_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int subtype_base_sq int_subtype_base upto_decomp1 map_cons_lemma list_ind_cons_lemma null_nil_lemma upto_decomp2 nat_wf le_wf intformeq_wf int_formula_prop_eq_lemma eq_int_wf bool_wf uiff_transitivity equal-wf-base assert_wf eqtt_to_assert assert_of_eq_int iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int null-map null-upto map-map
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination sqequalAxiom unionElimination instantiate cumulativity because_Cache dependent_set_memberEquality imageMemberEquality baseClosed equalityElimination baseApply closedConclusion applyEquality equalityTransitivity equalitySymmetry productElimination impliesFunctionality promote_hyp

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[F:Top].
    (tuple(n;i.F[i])  \msim{}  if  (n  =\msubz{}  0)  then  \mcdot{}
    if  (n  =\msubz{}  1)  then  F[0]
    else  <F[0],  tuple(n  -  1;i.F[i  +  1])>
    fi  )



Date html generated: 2017_04_17-AM-09_29_16
Last ObjectModification: 2017_02_27-PM-05_29_27

Theory : tuples


Home Index