Nuprl Lemma : tuple-decomp
∀[n:ℕ]. ∀[F:Top].  (tuple(n;i.F[i]) ~ if (n =z 0) then ⋅ if (n =z 1) then F[0] else <F[0], tuple(n - 1;i.F[i + 1])> fi )
Proof
Definitions occuring in Statement : 
tuple: tuple(n;i.F[i])
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
it: ⋅
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
pair: <a, b>
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
tuple: tuple(n;i.F[i])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
upto: upto(n)
, 
from-upto: [n, m)
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
bfalse: ff
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
btrue: tt
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
append: as @ bs
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
compose: f o g
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
top_wf, 
map_nil_lemma, 
list_ind_nil_lemma, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
upto_decomp1, 
map_cons_lemma, 
list_ind_cons_lemma, 
null_nil_lemma, 
upto_decomp2, 
nat_wf, 
le_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eq_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
null-map, 
null-upto, 
map-map
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
unionElimination, 
instantiate, 
cumulativity, 
because_Cache, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
equalityElimination, 
baseApply, 
closedConclusion, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
impliesFunctionality, 
promote_hyp
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[F:Top].
    (tuple(n;i.F[i])  \msim{}  if  (n  =\msubz{}  0)  then  \mcdot{}
    if  (n  =\msubz{}  1)  then  F[0]
    else  <F[0],  tuple(n  -  1;i.F[i  +  1])>
    fi  )
Date html generated:
2017_04_17-AM-09_29_16
Last ObjectModification:
2017_02_27-PM-05_29_27
Theory : tuples
Home
Index