Nuprl Lemma : Rice-theorem-for-Type

F:Type ⟶ 𝔹((∀X,Y:Type.  (X  Y))  ((F T.tt) ∈ (Type ⟶ 𝔹)) ∨ (F T.ff) ∈ (Type ⟶ 𝔹))))


Proof




Definitions occuring in Statement :  equipollent: B bfalse: ff btrue: tt bool: 𝔹 all: x:A. B[x] implies:  Q or: P ∨ Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  not: ¬A rev_implies:  Q iff: ⇐⇒ Q subtype_rel: A ⊆B true: True squash: T compose: g false: False assert: b ifthenelse: if then else fi  bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  equal-wf-base-T equal-wf-T-base btrue_neq_bfalse assert_elim false_wf assert_wf iff_imp_equal_bool iff_weakening_equal subtype_rel_self true_wf squash_wf nat-inf_wf compose_wf nat-inf-limit nat-inf-infinity_wf nat2inf_wf nat_wf nat-inf-attach bfalse_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert btrue_wf eqtt_to_assert bool_wf equal_wf equipollent_wf all_wf
Rules used in proof :  inrFormation functionExtensionality inlFormation voidEquality independent_pairFormation baseClosed imageMemberEquality natural_numberEquality imageElimination rename voidElimination independent_functionElimination dependent_functionElimination promote_hyp dependent_pairFormation because_Cache independent_isectElimination productElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination applyEquality hypothesis hypothesisEquality functionEquality cumulativity lambdaEquality sqequalRule universeEquality isectElimination sqequalHypSubstitution extract_by_obid introduction instantiate thin cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}F:Type  {}\mrightarrow{}  \mBbbB{}.  ((\mforall{}X,Y:Type.    (X  \msim{}  Y  {}\mRightarrow{}  F  X  =  F  Y))  {}\mRightarrow{}  ((F  =  (\mlambda{}T.tt))  \mvee{}  (F  =  (\mlambda{}T.ff))))



Date html generated: 2018_07_29-AM-09_29_31
Last ObjectModification: 2018_07_27-PM-04_34_49

Theory : basic


Home Index