Nuprl Lemma : Rice-theorem-for-Type
∀F:Type ⟶ 𝔹. ((∀X,Y:Type.  (X ~ Y 
⇒ F X = F Y)) 
⇒ ((F = (λT.tt) ∈ (Type ⟶ 𝔹)) ∨ (F = (λT.ff) ∈ (Type ⟶ 𝔹))))
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
bfalse: ff
, 
btrue: tt
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
compose: f o g
, 
false: False
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
equal-wf-base-T, 
equal-wf-T-base, 
btrue_neq_bfalse, 
assert_elim, 
false_wf, 
assert_wf, 
iff_imp_equal_bool, 
iff_weakening_equal, 
subtype_rel_self, 
true_wf, 
squash_wf, 
nat-inf_wf, 
compose_wf, 
nat-inf-limit, 
nat-inf-infinity_wf, 
nat2inf_wf, 
nat_wf, 
nat-inf-attach, 
bfalse_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
btrue_wf, 
eqtt_to_assert, 
bool_wf, 
equal_wf, 
equipollent_wf, 
all_wf
Rules used in proof : 
inrFormation, 
functionExtensionality, 
inlFormation, 
voidEquality, 
independent_pairFormation, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination, 
rename, 
voidElimination, 
independent_functionElimination, 
dependent_functionElimination, 
promote_hyp, 
dependent_pairFormation, 
because_Cache, 
independent_isectElimination, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
functionEquality, 
cumulativity, 
lambdaEquality, 
sqequalRule, 
universeEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
instantiate, 
thin, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}F:Type  {}\mrightarrow{}  \mBbbB{}.  ((\mforall{}X,Y:Type.    (X  \msim{}  Y  {}\mRightarrow{}  F  X  =  F  Y))  {}\mRightarrow{}  ((F  =  (\mlambda{}T.tt))  \mvee{}  (F  =  (\mlambda{}T.ff))))
Date html generated:
2018_07_29-AM-09_29_31
Last ObjectModification:
2018_07_27-PM-04_34_49
Theory : basic
Home
Index