Nuprl Lemma : nat-inf-limit

p:ℕ∞ ⟶ 𝔹((∀n:ℕn∞ ff)  p ∞ ff)


Proof




Definitions occuring in Statement :  nat-inf-infinity: nat2inf: n∞ nat-inf: ℕ∞ nat: bfalse: ff bool: 𝔹 all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T bool: 𝔹 unit: Unit it: btrue: tt uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A false: False bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b nat-inf: ℕ∞ nat: ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) prop: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T so_apply: x[s] rev_uimplies: rev_uimplies(P;Q) rev_implies:  Q iff: ⇐⇒ Q subtype_rel: A ⊆B less_than': less_than'(a;b) true: True subtract: m nat2inf: n∞ nat-inf-infinity:
Lemmas referenced :  nat-inf-infinity_wf eqtt_to_assert no-weak-limited-omniscience eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot bfalse_wf istype-nat nat2inf_wf nat-inf_wf bnot_wf b-exists_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le int_seg_properties int_seg_wf assert_of_bnot assert-b-exists istype-assert decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than decidable__equal_int subtract_wf set_subtype_base lelt_wf int_subtype_base intformeq_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma subtype_rel_self int_seg_subtype_nat istype-false btrue_wf equal-wf-T-base nat_wf le_wf primrec-wf2 decidable__exists_int_seg decidable__equal_bool easy-member-int_seg add-associates add-swap add-commutes zero-add iff_imp_equal_bool lt_int_wf istype-void iff_weakening_uiff assert_wf not_wf less_than_wf assert_of_lt_int istype-true assert_elim btrue_neq_bfalse assert_functionality_wrt_uiff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut applyEquality hypothesisEquality introduction extract_by_obid hypothesis inhabitedIsType thin sqequalHypSubstitution unionElimination equalityElimination isectElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination independent_functionElimination voidElimination dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination instantiate cumulativity because_Cache sqequalRule functionIsType universeIsType dependent_set_memberEquality_alt lambdaEquality_alt addEquality setElimination rename natural_numberEquality approximateComputation int_eqEquality Error :memTop,  independent_pairFormation imageElimination productIsType intEquality applyLambdaEquality hypothesis_subsumption functionEquality productEquality baseClosed baseApply closedConclusion setIsType imageMemberEquality sqequalBase inlFormation_alt inrFormation_alt hyp_replacement

Latex:
\mforall{}p:\mBbbN{}\minfty{}  {}\mrightarrow{}  \mBbbB{}.  ((\mforall{}n:\mBbbN{}.  p  n\minfty{}  =  ff)  {}\mRightarrow{}  p  \minfty{}  =  ff)



Date html generated: 2020_05_20-AM-07_47_51
Last ObjectModification: 2020_02_28-PM-02_49_04

Theory : basic


Home Index