Nuprl Lemma : is-list-if-has-value-rec-map

[t,f:Base].  is-list-if-has-value-rec(map(f;t))


Proof




Definitions occuring in Statement :  is-list-if-has-value-rec: is-list-if-has-value-rec(t) map: map(f;as) uall: [x:A]. B[x] base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] is-list-if-has-value-rec: is-list-if-has-value-rec(t) is-list-if-has-value-fun: is-list-if-has-value-fun(t;n) member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: unit: Unit decidable: Dec(P) or: P ∨ Q exposed-it: exposed-it bool: 𝔹 it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b map: map(f;as) list_ind: list_ind cons: [a b] pi2: snd(t) nil: [] true: True
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf primrec0_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int decomp-map-if-has-value ispair-bool-if-has-value has-value-if-has-value-map bool_cases map_cons_lemma assert_of_bnot nat_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache unionElimination equalityElimination productElimination promote_hyp instantiate cumulativity baseApply closedConclusion baseClosed

Latex:
\mforall{}[t,f:Base].    is-list-if-has-value-rec(map(f;t))



Date html generated: 2018_05_21-PM-10_19_27
Last ObjectModification: 2017_07_26-PM-06_37_00

Theory : eval!all


Home Index