Nuprl Lemma : can-apply-fun-exp-add

[A:Type]. ∀[n,m:ℕ]. ∀[f:A ⟶ (A Top)]. ∀[x:A].
  {(↑can-apply(f^m;x)) ∧ (↑can-apply(f^n;do-apply(f^m;x))) ∧ (do-apply(f^n m;x) do-apply(f^n;do-apply(f^m;x)) ∈ A)} 
  supposing ↑can-apply(f^n m;x)


Proof




Definitions occuring in Statement :  p-fun-exp: f^n do-apply: do-apply(f;x) can-apply: can-apply(f;x) nat: assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top guard: {T} and: P ∧ Q function: x:A ⟶ B[x] union: left right add: m universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] top: Top true: True guard: {T} uiff: uiff(P;Q) and: P ∧ Q implies:  Q nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  assert_functionality_wrt_uiff can-apply_wf p-fun-exp_wf p-compose_wf top_wf squash_wf true_wf p-fun-exp-add subtype_rel_dep_function subtype_rel_union assert_witness do-apply_wf assert_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf nat_wf can-apply-compose equal_wf iff_weakening_equal do-apply-compose
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache applyEquality sqequalRule cumulativity hypothesisEquality functionExtensionality independent_isectElimination lambdaEquality imageElimination equalityTransitivity equalitySymmetry functionEquality unionEquality lambdaFormation isect_memberEquality voidElimination voidEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_pairEquality independent_functionElimination axiomEquality dependent_set_memberEquality addEquality setElimination rename dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[f:A  {}\mrightarrow{}  (A  +  Top)].  \mforall{}[x:A].
    \{(\muparrow{}can-apply(f\^{}m;x))
    \mwedge{}  (\muparrow{}can-apply(f\^{}n;do-apply(f\^{}m;x)))
    \mwedge{}  (do-apply(f\^{}n  +  m;x)  =  do-apply(f\^{}n;do-apply(f\^{}m;x)))\} 
    supposing  \muparrow{}can-apply(f\^{}n  +  m;x)



Date html generated: 2017_10_01-AM-09_14_45
Last ObjectModification: 2017_07_26-PM-04_49_42

Theory : general


Home Index