Nuprl Lemma : can-apply-fun-exp-add
∀[A:Type]. ∀[n,m:ℕ]. ∀[f:A ⟶ (A + Top)]. ∀[x:A].
  {(↑can-apply(f^m;x)) ∧ (↑can-apply(f^n;do-apply(f^m;x))) ∧ (do-apply(f^n + m;x) = do-apply(f^n;do-apply(f^m;x)) ∈ A)} 
  supposing ↑can-apply(f^n + m;x)
Proof
Definitions occuring in Statement : 
p-fun-exp: f^n
, 
do-apply: do-apply(f;x)
, 
can-apply: can-apply(f;x)
, 
nat: ℕ
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
guard: {T}
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
add: n + m
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
true: True
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
assert_functionality_wrt_uiff, 
can-apply_wf, 
p-fun-exp_wf, 
p-compose_wf, 
top_wf, 
squash_wf, 
true_wf, 
p-fun-exp-add, 
subtype_rel_dep_function, 
subtype_rel_union, 
assert_witness, 
do-apply_wf, 
assert_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
nat_wf, 
can-apply-compose, 
equal_wf, 
iff_weakening_equal, 
do-apply-compose
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
applyEquality, 
sqequalRule, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
independent_isectElimination, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
unionEquality, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_pairEquality, 
independent_functionElimination, 
axiomEquality, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[f:A  {}\mrightarrow{}  (A  +  Top)].  \mforall{}[x:A].
    \{(\muparrow{}can-apply(f\^{}m;x))
    \mwedge{}  (\muparrow{}can-apply(f\^{}n;do-apply(f\^{}m;x)))
    \mwedge{}  (do-apply(f\^{}n  +  m;x)  =  do-apply(f\^{}n;do-apply(f\^{}m;x)))\} 
    supposing  \muparrow{}can-apply(f\^{}n  +  m;x)
Date html generated:
2017_10_01-AM-09_14_45
Last ObjectModification:
2017_07_26-PM-04_49_42
Theory : general
Home
Index