Nuprl Lemma : count-cyclic-map
∀n:ℕ+. cyclic-map(ℕn) ~ ℕ(n - 1)!
Proof
Definitions occuring in Statement : 
cyclic-map: cyclic-map(T)
, 
fact: (n)!
, 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
subtract: n - m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
nat_plus_wf, 
cyclic-map_wf, 
int_seg_wf, 
fact_wf, 
subtract_wf, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
combination_wf, 
injection_wf, 
equipollent_same, 
equipollent_functionality_wrt_equipollent, 
equipollent_transitivity, 
equipollent_inversion, 
cyclic-map-equipollent, 
injections-combinations, 
equipollent-factorial, 
equipollent_weakening_ext-eq, 
ext-eq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
because_Cache, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
applyEquality, 
productElimination
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  cyclic-map(\mBbbN{}n)  \msim{}  \mBbbN{}(n  -  1)!
Date html generated:
2019_10_15-AM-11_22_24
Last ObjectModification:
2018_10_09-PM-00_15_12
Theory : general
Home
Index