Nuprl Lemma : d-conv_wf
∀[r:CRng]. ∀[f,g:ℕ ⟶ |r|].  (d-conv(r;f;g) ∈ ℕ ⟶ |r|)
Proof
Definitions occuring in Statement : 
d-conv: d-conv(r;f;g)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
crng: CRng
, 
rng_car: |r|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
nat: ℕ
, 
prop: ℙ
, 
uimplies: b supposing a
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
true: True
, 
d-conv: d-conv(r;f;g)
, 
crng: CRng
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
Lemmas referenced : 
nat_wf, 
two-factorizations_wf, 
list-subtype-bag, 
equal_wf, 
subtype_rel_self, 
subtype_rel_bag, 
le_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
mul_cancel_in_le, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
itermMultiply_wf, 
intformeq_wf, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
bag-summation_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_times_wf, 
rng_all_properties, 
rng_plus_comm2, 
crng_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
hypothesis, 
applyEquality, 
sqequalHypSubstitution, 
sqequalRule, 
isectElimination, 
thin, 
hypothesisEquality, 
setEquality, 
because_Cache, 
productEquality, 
setElimination, 
rename, 
independent_isectElimination, 
intEquality, 
natural_numberEquality, 
productElimination, 
multiplyEquality, 
lambdaEquality, 
independent_pairEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberFormation, 
functionExtensionality, 
axiomEquality, 
functionEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[f,g:\mBbbN{}  {}\mrightarrow{}  |r|].    (d-conv(r;f;g)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  |r|)
Date html generated:
2018_05_21-PM-09_06_33
Last ObjectModification:
2017_07_26-PM-06_29_15
Theory : general
Home
Index