Nuprl Lemma : two-factorizations_wf

[n:ℕ]. (two-factorizations(n) ∈ {p:ℤ × ℤ((1 ≤ (fst(p))) ∧ ((fst(p)) ≤ n)) ∧ (((fst(p)) (snd(p))) n ∈ ℤ)}  List)


Proof




Definitions occuring in Statement :  two-factorizations: two-factorizations(n) list: List nat: uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) le: A ≤ B and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T two-factorizations: two-factorizations(n) nat: and: P ∧ Q prop: all: x:A. B[x] implies:  Q nequal: a ≠ b ∈  ge: i ≥  not: ¬A uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top subtype_rel: A ⊆B pi1: fst(t) pi2: snd(t) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B sq_stable: SqStable(P) squash: T decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) int_nzero: -o sq_type: SQType(T)
Lemmas referenced :  from-upto_wf list_wf le_wf less_than_wf mapfilter_wf eq_int_wf nat_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf equal-wf-base int_subtype_base equal_wf assert_wf equal-wf-T-base set_wf sq_stable__and sq_stable__le sq_stable__less_than member-less_than squash_wf decidable__le intformnot_wf int_formula_prop_not_lemma intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma assert_of_eq_int div_rem_sum nequal_wf subtype_base_sq decidable__equal_int add-is-int-iff multiply-is-int-iff itermMultiply_wf int_term_value_mul_lemma false_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality addEquality setElimination rename hypothesisEquality hypothesis setEquality intEquality productEquality because_Cache lambdaFormation lambdaEquality remainderEquality productElimination independent_isectElimination dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll applyEquality baseClosed multiplyEquality independent_functionElimination dependent_set_memberEquality independent_pairEquality divideEquality imageMemberEquality imageElimination unionElimination instantiate cumulativity equalityTransitivity equalitySymmetry pointwiseFunctionality promote_hyp baseApply closedConclusion axiomEquality

Latex:
\mforall{}[n:\mBbbN{}]
    (two-factorizations(n)  \mmember{}  \{p:\mBbbZ{}  \mtimes{}  \mBbbZ{}| 
                                                        ((1  \mleq{}  (fst(p)))  \mwedge{}  ((fst(p))  \mleq{}  n))  \mwedge{}  (((fst(p))  *  (snd(p)))  =  n)\}    List)



Date html generated: 2018_05_21-PM-09_05_51
Last ObjectModification: 2017_07_26-PM-06_28_41

Theory : general


Home Index