Nuprl Lemma : two-factorizations_wf
∀[n:ℕ]. (two-factorizations(n) ∈ {p:ℤ × ℤ| ((1 ≤ (fst(p))) ∧ ((fst(p)) ≤ n)) ∧ (((fst(p)) * (snd(p))) = n ∈ ℤ)}  List)
Proof
Definitions occuring in Statement : 
two-factorizations: two-factorizations(n)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
le: A ≤ B
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
two-factorizations: two-factorizations(n)
, 
nat: ℕ
, 
and: P ∧ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nequal: a ≠ b ∈ T 
, 
ge: i ≥ j 
, 
not: ¬A
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
int_nzero: ℤ-o
, 
sq_type: SQType(T)
Lemmas referenced : 
from-upto_wf, 
list_wf, 
le_wf, 
less_than_wf, 
mapfilter_wf, 
eq_int_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
equal_wf, 
assert_wf, 
equal-wf-T-base, 
set_wf, 
sq_stable__and, 
sq_stable__le, 
sq_stable__less_than, 
member-less_than, 
squash_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
assert_of_eq_int, 
div_rem_sum, 
nequal_wf, 
subtype_base_sq, 
decidable__equal_int, 
add-is-int-iff, 
multiply-is-int-iff, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
false_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
setEquality, 
intEquality, 
productEquality, 
because_Cache, 
lambdaFormation, 
lambdaEquality, 
remainderEquality, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
applyEquality, 
baseClosed, 
multiplyEquality, 
independent_functionElimination, 
dependent_set_memberEquality, 
independent_pairEquality, 
divideEquality, 
imageMemberEquality, 
imageElimination, 
unionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
axiomEquality
Latex:
\mforall{}[n:\mBbbN{}]
    (two-factorizations(n)  \mmember{}  \{p:\mBbbZ{}  \mtimes{}  \mBbbZ{}| 
                                                        ((1  \mleq{}  (fst(p)))  \mwedge{}  ((fst(p))  \mleq{}  n))  \mwedge{}  (((fst(p))  *  (snd(p)))  =  n)\}    List)
Date html generated:
2018_05_21-PM-09_05_51
Last ObjectModification:
2017_07_26-PM-06_28_41
Theory : general
Home
Index