Nuprl Lemma : divides-iff-factors

n,m:ℕ+.  (n ⇐⇒ sub-bag(Prime;factors(n);factors(m)))


Proof




Definitions occuring in Statement :  factors: factors(n) Prime: Prime sub-bag: sub-bag(T;as;bs) divides: a nat_plus: + all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] nat_plus: + rev_implies:  Q divides: a exists: x:A. B[x] gt: i > j decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top sub-bag: sub-bag(T;as;bs) sq_type: SQType(T) guard: {T} squash: T true: True subtype_rel: A ⊆B Prime: Prime int_upper: {i...}
Lemmas referenced :  divides_wf sub-bag_wf Prime_wf factors_wf nat_plus_wf nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf pos_mul_arg_bounds less_than_wf subtype_base_sq int_subtype_base equal_wf squash_wf true_wf bag_wf append-factors bag-append_wf iff_weakening_equal int-bag-product_wf subtype_rel_bag product-factors int-bag-product-append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis productElimination dependent_functionElimination natural_numberEquality equalityTransitivity equalitySymmetry unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll independent_functionElimination dependent_set_memberEquality instantiate cumulativity applyEquality imageElimination universeEquality because_Cache imageMemberEquality baseClosed applyLambdaEquality multiplyEquality

Latex:
\mforall{}n,m:\mBbbN{}\msupplus{}.    (n  |  m  \mLeftarrow{}{}\mRightarrow{}  sub-bag(Prime;factors(n);factors(m)))



Date html generated: 2018_05_21-PM-07_31_16
Last ObjectModification: 2017_07_26-PM-05_06_31

Theory : general


Home Index