Nuprl Lemma : divides-iff-factors
∀n,m:ℕ+.  (n | m 
⇐⇒ sub-bag(Prime;factors(n);factors(m)))
Proof
Definitions occuring in Statement : 
factors: factors(n)
, 
Prime: Prime
, 
sub-bag: sub-bag(T;as;bs)
, 
divides: b | a
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
rev_implies: P 
⇐ Q
, 
divides: b | a
, 
exists: ∃x:A. B[x]
, 
gt: i > j
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
sub-bag: sub-bag(T;as;bs)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
Prime: Prime
, 
int_upper: {i...}
Lemmas referenced : 
divides_wf, 
sub-bag_wf, 
Prime_wf, 
factors_wf, 
nat_plus_wf, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
pos_mul_arg_bounds, 
less_than_wf, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
bag_wf, 
append-factors, 
bag-append_wf, 
iff_weakening_equal, 
int-bag-product_wf, 
subtype_rel_bag, 
product-factors, 
int-bag-product-append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
dependent_functionElimination, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
independent_functionElimination, 
dependent_set_memberEquality, 
instantiate, 
cumulativity, 
applyEquality, 
imageElimination, 
universeEquality, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
multiplyEquality
Latex:
\mforall{}n,m:\mBbbN{}\msupplus{}.    (n  |  m  \mLeftarrow{}{}\mRightarrow{}  sub-bag(Prime;factors(n);factors(m)))
Date html generated:
2018_05_21-PM-07_31_16
Last ObjectModification:
2017_07_26-PM-05_06_31
Theory : general
Home
Index