Nuprl Lemma : divides-iff-gcd

x,y:ℤ.  (x ⇐⇒ gcd(y;x) x ∈ ℤ)


Proof




Definitions occuring in Statement :  divides: a gcd: gcd(a;b) all: x:A. B[x] iff: ⇐⇒ Q int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q gcd: gcd(a;b) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  bfalse: ff not: ¬A divides: a exists: x:A. B[x] sq_type: SQType(T) guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top nequal: a ≠ b ∈  subtype_rel: A ⊆B int_nzero: -o squash: T true: True
Lemmas referenced :  iff_weakening_equal true_wf squash_wf gcd_is_divisor_1 nequal_wf divides_iff_rem_zero equal-wf-base int_formula_prop_wf int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermMultiply_wf itermConstant_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int int_subtype_base subtype_base_sq assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert_of_eq_int eqtt_to_assert uiff_transitivity not_wf bnot_wf bfalse_wf assert_wf btrue_wf bool_wf eq_int_wf gcd_wf equal_wf divides_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality intEquality dependent_functionElimination sqequalRule natural_numberEquality because_Cache equalityTransitivity equalitySymmetry equalityEquality unionElimination equalityElimination independent_functionElimination productElimination independent_isectElimination impliesFunctionality instantiate cumulativity dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll remainderEquality baseApply closedConclusion baseClosed applyEquality dependent_set_memberEquality imageElimination imageMemberEquality universeEquality

Latex:
\mforall{}x,y:\mBbbZ{}.    (x  |  y  \mLeftarrow{}{}\mRightarrow{}  gcd(y;x)  =  x)



Date html generated: 2016_05_15-PM-04_50_32
Last ObjectModification: 2016_01_16-AM-11_27_03

Theory : general


Home Index