Nuprl Lemma : divides-iff-gcd
∀x,y:ℤ.  (x | y 
⇐⇒ gcd(y;x) = x ∈ ℤ)
Proof
Definitions occuring in Statement : 
divides: b | a
, 
gcd: gcd(a;b)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
gcd: gcd(a;b)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
not: ¬A
, 
divides: b | a
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
nequal: a ≠ b ∈ T 
, 
subtype_rel: A ⊆r B
, 
int_nzero: ℤ-o
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
iff_weakening_equal, 
true_wf, 
squash_wf, 
gcd_is_divisor_1, 
nequal_wf, 
divides_iff_rem_zero, 
equal-wf-base, 
int_formula_prop_wf, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
int_subtype_base, 
subtype_base_sq, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
iff_transitivity, 
assert_of_eq_int, 
eqtt_to_assert, 
uiff_transitivity, 
not_wf, 
bnot_wf, 
bfalse_wf, 
assert_wf, 
btrue_wf, 
bool_wf, 
eq_int_wf, 
gcd_wf, 
equal_wf, 
divides_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
intEquality, 
dependent_functionElimination, 
sqequalRule, 
natural_numberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
equalityEquality, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
impliesFunctionality, 
instantiate, 
cumulativity, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
remainderEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
dependent_set_memberEquality, 
imageElimination, 
imageMemberEquality, 
universeEquality
Latex:
\mforall{}x,y:\mBbbZ{}.    (x  |  y  \mLeftarrow{}{}\mRightarrow{}  gcd(y;x)  =  x)
Date html generated:
2016_05_15-PM-04_50_32
Last ObjectModification:
2016_01_16-AM-11_27_03
Theory : general
Home
Index