Nuprl Lemma : geom-sum-int

[a:ℤ]. ∀[n:ℕ].  (((1 a) * Σ(a^i i < n)) (1 a^n) ∈ ℤ)


Proof




Definitions occuring in Statement :  exp: i^n sum: Σ(f[x] x < k) nat: uall: [x:A]. B[x] multiply: m subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B integ_dom: IntegDom{i} int_ring: -rng rng_car: |r| pi1: fst(t) squash: T prop: infix_ap: y nat: so_lambda: λ2x.t[x] crng: CRng int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top so_apply: x[s] rng: Rng true: True guard: {T} iff: ⇐⇒ Q rng_times: * pi2: snd(t) rng_plus: +r rng_one: 1 rng_minus: -r subtract: m sq_type: SQType(T)
Lemmas referenced :  sum_of_geometric_prog int_ring_wf equal_wf squash_wf true_wf istype-universe rng_car_wf rng_times_wf rng_plus_wf rng_one_wf rng_minus_wf rng_sum-int rng_nexp_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le subtype_rel_self int_seg_wf iff_weakening_equal sum_functionality subtract_wf itermSubtract_wf int_term_value_subtract_lemma itermAdd_wf int_term_value_add_lemma exp_wf2 rng_nexp-int istype-nat subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf itermMinus_wf int_formula_prop_eq_lemma int_term_value_minus_lemma sum_wf minus-zero add-zero zero-add subtract-elim
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality lambdaEquality_alt setElimination rename hypothesisEquality inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule imageElimination universeIsType instantiate universeEquality because_Cache natural_numberEquality dependent_set_memberEquality_alt productElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation intEquality imageMemberEquality baseClosed addEquality lambdaFormation_alt axiomEquality isectIsTypeImplies cumulativity multiplyEquality functionIsType

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (((1  -  a)  *  \mSigma{}(a\^{}i  |  i  <  n))  =  (1  -  a\^{}n))



Date html generated: 2019_10_15-AM-11_23_21
Last ObjectModification: 2019_08_14-AM-11_01_55

Theory : general


Home Index