Nuprl Lemma : int_mod_ring_wf
∀[n:ℕ+]. (int_mod_ring(n) ∈ CDRng)
Proof
Definitions occuring in Statement : 
int_mod_ring: int_mod_ring(n)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cdrng: CDRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_mod_ring: int_mod_ring(n)
, 
cdrng: CDRng
, 
rng_car: |r|
, 
pi1: fst(t)
, 
rng_eq: =b
, 
pi2: snd(t)
, 
crng: CRng
, 
rng_times: *
, 
rng: Rng
, 
rng_plus: +r
, 
rng_zero: 0
, 
rng_minus: -r
, 
rng_one: 1
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
rng_sig: RngSig
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
bilinear: BiLinear(T;pl;tm)
, 
monoid_p: IsMonoid(T;op;id)
, 
group_p: IsGroup(T;op;id;inv)
, 
infix_ap: x f y
, 
ident: Ident(T;op;id)
, 
assoc: Assoc(T;op)
, 
inverse: Inverse(T;op;id;inv)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
comm: Comm(T;op)
, 
uiff: uiff(P;Q)
, 
eqfun_p: IsEqFun(T;eq)
, 
int_seg: {i..j-}
Lemmas referenced : 
nat_plus_wf, 
bool_wf, 
unit_wf2, 
add_wf_int_mod, 
bfalse_wf, 
modulus_wf_int_mod, 
eq_int_wf, 
int_mod_wf, 
minus_wf_int_mod, 
it_wf, 
int-subtype-int_mod, 
multiply_wf_int_mod, 
add_assoc_int_mod, 
add_zero_int_mod, 
add-commutes, 
add_inverse_int_mod, 
multiply_assoc_int_mod, 
multiply_one_int_mod, 
mul-commutes, 
multiply_distrib_int_mod, 
multiply_distrib2_int_mod, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
add_com_int_mod, 
subtype_rel_self, 
iff_weakening_equal, 
rng_one_wf, 
rng_times_wf, 
rng_minus_wf, 
rng_zero_wf, 
rng_plus_wf, 
rng_car_wf, 
ring_p_wf, 
multiply_com_int_mod, 
comm_wf, 
assert_witness, 
assert_of_eq_int, 
assert_wf, 
iff_weakening_uiff, 
equal_int_mod_iff_modulus, 
int_subtype_base, 
rng_eq_wf, 
eqfun_p_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
extract_by_obid, 
dependent_set_memberEquality_alt, 
unionEquality, 
functionEquality, 
productEquality, 
unionIsType, 
functionIsType, 
productIsType, 
natural_numberEquality, 
closedConclusion, 
inhabitedIsType, 
because_Cache, 
applyEquality, 
lambdaEquality_alt, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
dependent_pairEquality_alt, 
inrEquality_alt, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
independent_pairFormation, 
Error :memTop, 
productElimination, 
independent_pairEquality, 
imageElimination, 
instantiate, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
isect_memberEquality, 
isect_memberFormation, 
equalityIsType1, 
promote_hyp, 
intEquality, 
equalityIsType4
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (int\_mod\_ring(n)  \mmember{}  CDRng)
Date html generated:
2020_05_20-AM-08_20_46
Last ObjectModification:
2019_12_31-PM-06_31_25
Theory : general
Home
Index