Nuprl Lemma : int_mod_ring_wf

[n:ℕ+]. (int_mod_ring(n) ∈ CDRng)


Proof




Definitions occuring in Statement :  int_mod_ring: int_mod_ring(n) nat_plus: + uall: [x:A]. B[x] member: t ∈ T cdrng: CDRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_mod_ring: int_mod_ring(n) cdrng: CDRng rng_car: |r| pi1: fst(t) rng_eq: =b pi2: snd(t) crng: CRng rng_times: * rng: Rng rng_plus: +r rng_zero: 0 rng_minus: -r rng_one: 1 subtype_rel: A ⊆B nat_plus: + rng_sig: RngSig ring_p: IsRing(T;plus;zero;neg;times;one) bilinear: BiLinear(T;pl;tm) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) infix_ap: y ident: Ident(T;op;id) assoc: Assoc(T;op) inverse: Inverse(T;op;id;inv) and: P ∧ Q cand: c∧ B squash: T prop: true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q comm: Comm(T;op) uiff: uiff(P;Q) eqfun_p: IsEqFun(T;eq) int_seg: {i..j-}
Lemmas referenced :  nat_plus_wf bool_wf unit_wf2 add_wf_int_mod bfalse_wf modulus_wf_int_mod eq_int_wf int_mod_wf minus_wf_int_mod it_wf int-subtype-int_mod multiply_wf_int_mod add_assoc_int_mod add_zero_int_mod add-commutes add_inverse_int_mod multiply_assoc_int_mod multiply_one_int_mod mul-commutes multiply_distrib_int_mod multiply_distrib2_int_mod equal_wf squash_wf true_wf istype-universe add_com_int_mod subtype_rel_self iff_weakening_equal rng_one_wf rng_times_wf rng_minus_wf rng_zero_wf rng_plus_wf rng_car_wf ring_p_wf multiply_com_int_mod comm_wf assert_witness assert_of_eq_int assert_wf iff_weakening_uiff equal_int_mod_iff_modulus int_subtype_base rng_eq_wf eqfun_p_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType extract_by_obid dependent_set_memberEquality_alt unionEquality functionEquality productEquality unionIsType functionIsType productIsType natural_numberEquality closedConclusion inhabitedIsType because_Cache applyEquality lambdaEquality_alt hypothesisEquality rename setElimination thin isectElimination dependent_pairEquality_alt inrEquality_alt isect_memberEquality_alt isectIsTypeImplies independent_pairFormation Error :memTop,  productElimination independent_pairEquality imageElimination instantiate universeEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination isect_memberEquality isect_memberFormation equalityIsType1 promote_hyp intEquality equalityIsType4

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (int\_mod\_ring(n)  \mmember{}  CDRng)



Date html generated: 2020_05_20-AM-08_20_46
Last ObjectModification: 2019_12_31-PM-06_31_25

Theory : general


Home Index