Nuprl Lemma : l-ordered-filter

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀P:T ⟶ 𝔹. ∀L:T List.  (l-ordered(T;x,y.R[x;y];L)  l-ordered(T;x,y.R[x;y];filter(P;L)))


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) filter: filter(P;l) list: List bool: 𝔹 uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a top: Top true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  cand: c∧ B bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  list_induction l-ordered_wf filter_wf5 subtype_rel_dep_function bool_wf l_member_wf set_wf list_wf filter_nil_lemma true_wf l-ordered-nil-true nil_wf filter_cons_lemma eqtt_to_assert l-ordered-cons subtype_rel_self member_filter_2 eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot all_wf cons_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality cumulativity applyEquality functionExtensionality because_Cache hypothesis setEquality independent_isectElimination setElimination rename independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality addLevel impliesFunctionality productElimination unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_pairFormation dependent_pairFormation promote_hyp instantiate productEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:T  List.    (l-ordered(T;x,y.R[x;y];L)  {}\mRightarrow{}  l-ordered(T;x,y.R[x;y];filter(P;L)))



Date html generated: 2018_05_21-PM-07_38_18
Last ObjectModification: 2017_07_26-PM-05_12_34

Theory : general


Home Index