Nuprl Lemma : norm-factors_wf

[L:ℕ List]. (norm-factors(L) ∈ ℕ List)


Proof




Definitions occuring in Statement :  norm-factors: norm-factors(L) list: List nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  norm-factors: norm-factors(L) uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_lambda: λ2y.t[x; y] spreadn: spread3 all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a has-value: (a)↓ ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b so_apply: x[s1;s2]
Lemmas referenced :  list_accum_wf list_wf nil_wf false_wf le_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int value-type-has-value int-value-type nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int cons_wf exp_wf4 nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache productEquality hypothesis independent_pairEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation hypothesisEquality lambdaEquality productElimination setElimination rename unionElimination equalityElimination independent_isectElimination callbyvalueReduce intEquality addEquality dependent_functionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity independent_functionElimination axiomEquality

Latex:
\mforall{}[L:\mBbbN{}  List].  (norm-factors(L)  \mmember{}  \mBbbN{}  List)



Date html generated: 2018_05_21-PM-07_42_09
Last ObjectModification: 2017_07_26-PM-05_19_41

Theory : general


Home Index