Nuprl Lemma : oob-apply_wf

[A,B:Type]. ∀[X:bag(A)]. ∀[Y:bag(B)].  (oob-apply(X;Y) ∈ bag(one_or_both(A;B)))


Proof




Definitions occuring in Statement :  oob-apply: oob-apply(xs;ys) one_or_both: one_or_both(A;B) bag: bag(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T oob-apply: oob-apply(xs;ys) subtype_rel: A ⊆B nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  cand: c∧ B decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  eq_int_wf bag-size_wf nat_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf eqtt_to_assert assert_of_eq_int single-bag_wf one_or_both_wf oobboth_wf bag-only_wf2 single-valued-bag-if-le1 decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf itermConstant_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot oobleft_wf equal_wf oobright_wf empty-bag_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed because_Cache intEquality independent_functionElimination productElimination independent_isectElimination dependent_functionElimination independent_pairEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll impliesFunctionality axiomEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[X:bag(A)].  \mforall{}[Y:bag(B)].    (oob-apply(X;Y)  \mmember{}  bag(one\_or\_both(A;B)))



Date html generated: 2018_05_21-PM-08_59_48
Last ObjectModification: 2017_07_26-PM-06_23_16

Theory : general


Home Index