Nuprl Lemma : oob-apply_wf
∀[A,B:Type]. ∀[X:bag(A)]. ∀[Y:bag(B)].  (oob-apply(X;Y) ∈ bag(one_or_both(A;B)))
Proof
Definitions occuring in Statement : 
oob-apply: oob-apply(xs;ys), 
one_or_both: one_or_both(A;B), 
bag: bag(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
oob-apply: oob-apply(xs;ys), 
subtype_rel: A ⊆r B, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
cand: A c∧ B, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
eq_int_wf, 
bag-size_wf, 
nat_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
single-bag_wf, 
one_or_both_wf, 
oobboth_wf, 
bag-only_wf2, 
single-valued-bag-if-le1, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
oobleft_wf, 
equal_wf, 
oobright_wf, 
empty-bag_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
because_Cache, 
intEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
independent_pairEquality, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
impliesFunctionality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[X:bag(A)].  \mforall{}[Y:bag(B)].    (oob-apply(X;Y)  \mmember{}  bag(one\_or\_both(A;B)))
Date html generated:
2018_05_21-PM-08_59_48
Last ObjectModification:
2017_07_26-PM-06_23_16
Theory : general
Home
Index