Nuprl Lemma : power-sum-split

[n:ℕ]. ∀[k:ℕ1]. ∀[x:ℤ]. ∀[a:ℕn ⟶ ℤ].  i<n.a[i]*x^i i<k.a[i]*x^i (x^k * Σi<k.a[k i]*x^i)) ∈ ℤ)


Proof




Definitions occuring in Statement :  power-sum: Σi<n.a[i]*x^i exp: i^n int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] multiply: m subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T power-sum: Σi<n.a[i]*x^i so_lambda: λ2x.t[x] so_apply: x[s] nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q less_than': less_than'(a;b) sq_type: SQType(T)
Lemmas referenced :  sum_split exp_wf2 int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le int_seg_wf subtype_base_sq int_subtype_base equal_wf squash_wf true_wf istype-universe sum_scalar_mult subtract_wf itermSubtract_wf intformless_wf itermAdd_wf int_term_value_subtract_lemma int_formula_prop_less_lemma int_term_value_add_lemma decidable__lt istype-less_than sum_wf subtype_rel_self iff_weakening_equal mul-commutes mul-swap add-commutes exp_add int_seg_subtype_nat istype-false mul_assoc istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt multiplyEquality applyEquality dependent_set_memberEquality_alt setElimination rename hypothesis productElimination imageElimination dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination instantiate cumulativity intEquality equalityTransitivity equalitySymmetry universeEquality because_Cache addEquality productIsType imageMemberEquality baseClosed functionIsType lambdaFormation_alt inhabitedIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[k:\mBbbN{}n  +  1].  \mforall{}[x:\mBbbZ{}].  \mforall{}[a:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].
    (\mSigma{}i<n.a[i]*x\^{}i  =  (\mSigma{}i<k.a[i]*x\^{}i  +  (x\^{}k  *  \mSigma{}i<n  -  k.a[k  +  i]*x\^{}i)))



Date html generated: 2020_05_20-AM-08_16_09
Last ObjectModification: 2019_12_26-PM-04_06_00

Theory : general


Home Index