Nuprl Lemma : power-sum-split
∀[n:ℕ]. ∀[k:ℕn + 1]. ∀[x:ℤ]. ∀[a:ℕn ⟶ ℤ].  (Σi<n.a[i]*x^i = (Σi<k.a[i]*x^i + (x^k * Σi<n - k.a[k + i]*x^i)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
power-sum: Σi<n.a[i]*x^i
, 
exp: i^n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
power-sum: Σi<n.a[i]*x^i
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than': less_than'(a;b)
, 
sq_type: SQType(T)
Lemmas referenced : 
sum_split, 
exp_wf2, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
int_seg_wf, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
sum_scalar_mult, 
subtract_wf, 
itermSubtract_wf, 
intformless_wf, 
itermAdd_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
decidable__lt, 
istype-less_than, 
sum_wf, 
subtype_rel_self, 
iff_weakening_equal, 
mul-commutes, 
mul-swap, 
add-commutes, 
exp_add, 
int_seg_subtype_nat, 
istype-false, 
mul_assoc, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
multiplyEquality, 
applyEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
hypothesis, 
productElimination, 
imageElimination, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
addEquality, 
productIsType, 
imageMemberEquality, 
baseClosed, 
functionIsType, 
lambdaFormation_alt, 
inhabitedIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[k:\mBbbN{}n  +  1].  \mforall{}[x:\mBbbZ{}].  \mforall{}[a:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].
    (\mSigma{}i<n.a[i]*x\^{}i  =  (\mSigma{}i<k.a[i]*x\^{}i  +  (x\^{}k  *  \mSigma{}i<n  -  k.a[k  +  i]*x\^{}i)))
Date html generated:
2020_05_20-AM-08_16_09
Last ObjectModification:
2019_12_26-PM-04_06_00
Theory : general
Home
Index