Nuprl Lemma : split-gap_wf

[T:Type]
  ∀f:T ⟶ ℤ. ∀L:T List.
    (split-gap(f;L) ∈ ∃XY:T List × (T List) [let X,Y XY 
                                             in (L (X Y) ∈ (T List))
                                                ∧ (∀i:ℕ||X|| 1. ((f X[i 1]) ((f X[i]) 1) ∈ ℤ))
                                                ∧ ((¬↑null(L))
                                                   ((¬↑null(X))
                                                     ∧ ¬((f hd(Y)) ((f last(X)) 1) ∈ ℤsupposing ||Y|| ≥ ))])


Proof




Definitions occuring in Statement :  split-gap: split-gap(f;L) last: last(L) select: L[n] hd: hd(l) length: ||as|| null: null(as) append: as bs list: List int_seg: {i..j-} assert: b uimplies: supposing a uall: [x:A]. B[x] ge: i ≥  all: x:A. B[x] sq_exists: x:A [B[x]] not: ¬A implies:  Q and: P ∧ Q member: t ∈ T apply: a function: x:A ⟶ B[x] spread: spread def product: x:A × B[x] subtract: m add: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a implies:  Q so_lambda: λ2x.t[x] prop: and: P ∧ Q top: Top int_seg: {i..j-} ge: i ≥  guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A uiff: uiff(P;Q) so_apply: x[s] sq_exists: x:A [B[x]] split-gap: split-gap(f;L) list_ind: list_ind split-at-first-gap-ext
Lemmas referenced :  split-at-first-gap-ext list_wf sq_exists_wf equal_wf append_wf length_wf length-append int_seg_wf subtract_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt add-is-int-iff intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma false_wf not_wf assert_wf null_wf3 subtype_rel_list top_wf ge_wf hd_wf last_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation applyEquality thin instantiate extract_by_obid hypothesis sqequalRule lambdaEquality isectElimination hypothesisEquality equalityTransitivity equalitySymmetry isectEquality universeEquality functionEquality cumulativity intEquality sqequalHypSubstitution productEquality because_Cache productElimination applyLambdaEquality isect_memberEquality voidElimination voidEquality natural_numberEquality functionExtensionality addEquality setElimination rename independent_isectElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality independent_pairFormation computeAll pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed axiomEquality

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}L:T  List.
        (split-gap(f;L)  \mmember{}  \mexists{}XY:T  List  \mtimes{}  (T  List)  [let  X,Y  =  XY 
                                                                                          in  (L  =  (X  @  Y))
                                                                                                \mwedge{}  (\mforall{}i:\mBbbN{}||X||  -  1.  ((f  X[i  +  1])  =  ((f  X[i])  +  1)))
                                                                                                \mwedge{}  ((\mneg{}\muparrow{}null(L))
                                                                                                    {}\mRightarrow{}  ((\mneg{}\muparrow{}null(X))
                                                                                                          \mwedge{}  \mneg{}((f  hd(Y))  =  ((f  last(X))  +  1)) 
                                                                                                              supposing  ||Y||  \mgeq{}  1  ))])



Date html generated: 2018_05_21-PM-07_40_39
Last ObjectModification: 2017_07_26-PM-05_14_45

Theory : general


Home Index