Nuprl Lemma : unzip-as-accum

[as:(Top × Top) List]
  (unzip(as) accumulate (with value and list item a):
                let p1,p2 
                in let a1,a2 
                   in <p1 [a1], p2 [a2]>
               over list:
                 as
               with starting value:
                <[], []>))


Proof




Definitions occuring in Statement :  unzip: unzip(as) append: as bs list_accum: list_accum cons: [a b] nil: [] list: List uall: [x:A]. B[x] top: Top spread: spread def pair: <a, b> product: x:A × B[x] sqequal: t
Definitions unfolded in proof :  unzip: unzip(as) all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] colength: colength(L) decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) pi1: fst(t) pi2: snd(t) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list_wf top_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases map_nil_lemma list_accum_nil_lemma append_nil_sq product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int map_cons_lemma list_accum_cons_lemma append_wf cons_wf nil_wf append_assoc_sq list_ind_cons_lemma list_ind_nil_lemma
Rules used in proof :  cut sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination sqequalAxiom productEquality applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate cumulativity imageElimination isect_memberFormation

Latex:
\mforall{}[as:(Top  \mtimes{}  Top)  List]
    (unzip(as)  \msim{}  accumulate  (with  value  p  and  list  item  a):
                                let  p1,p2  =  p 
                                in  let  a1,a2  =  a 
                                      in  <p1  @  [a1],  p2  @  [a2]>
                              over  list:
                                  as
                              with  starting  value:
                                <[],  []>))



Date html generated: 2018_05_21-PM-06_52_43
Last ObjectModification: 2017_07_26-PM-04_58_28

Theory : general


Home Index