Nuprl Lemma : wellfounded-llex-ext

[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].
  ((∀a,b:A.  SqStable(<[a;b]))
   WellFnd{i}(A;a,b.<[a;b])
   WellFnd{i}(Des(A;a,b.<[a;b]);L1,L2.L1 llex(A;a,b.<[a;b]) L2))


Proof




Definitions occuring in Statement :  llex: llex(A;a,b.<[a; b]) Des: Des(A;a,b.<[a; b]) wellfounded: WellFnd{i}(A;x,y.R[x; y]) sq_stable: SqStable(P) uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T btrue: tt it: bfalse: ff spreadn: let a,b,c,d,e in v[a; b; c; d; e] spreadn: spread4 wellfounded-llex list-cases any: any x llex-append1 decidable__lt colist-cases iff_weakening_equal iseg_select decidable__le decidable__squash decidable__and decidable__less_than' colist-ext list_induction nil_iseg cons_iseg decidable__not decidable_functionality squash_elim sq_stable_from_decidable decidable__implies decidable__false iff_preserves_decidability sq_stable__from_stable stable__from_decidable uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] length: ||as|| list_ind: list_ind nil: [] all: x:A. B[x] implies:  Q has-value: (a)↓ prop:
Lemmas referenced :  wellfounded-llex lifting-strict-decide strict4-decide lifting-strict-isaxiom lifting-strict-spread lifting-strict-less strict4-spread top_wf equal_wf has-value_wf_base is-exception_wf list-cases llex-append1 decidable__lt colist-cases iff_weakening_equal iseg_select decidable__le decidable__squash decidable__and decidable__less_than' colist-ext list_induction nil_iseg cons_iseg decidable__not decidable_functionality squash_elim sq_stable_from_decidable decidable__implies decidable__false iff_preserves_decidability sq_stable__from_stable stable__from_decidable
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination lambdaFormation sqequalSqle divergentSqle callbyvalueSpread productEquality productElimination sqleReflexivity hypothesisEquality dependent_functionElimination independent_functionElimination spreadExceptionCases axiomSqleEquality exceptionSqequal baseApply closedConclusion

Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a,b:A.    SqStable(<[a;b]))
    {}\mRightarrow{}  WellFnd\{i\}(A;a,b.<[a;b])
    {}\mRightarrow{}  WellFnd\{i\}(Des(A;a,b.<[a;b]);L1,L2.L1  llex(A;a,b.<[a;b])  L2))



Date html generated: 2018_05_21-PM-07_20_05
Last ObjectModification: 2018_05_19-PM-04_47_37

Theory : general


Home Index