Nuprl Lemma : wellfounded-llex

[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].
  ((∀a,b:A.  SqStable(<[a;b]))
   WellFnd{i}(A;a,b.<[a;b])
   WellFnd{i}(Des(A;a,b.<[a;b]);L1,L2.L1 llex(A;a,b.<[a;b]) L2))


Proof




Definitions occuring in Statement :  llex: llex(A;a,b.<[a; b]) Des: Des(A;a,b.<[a; b]) wellfounded: WellFnd{i}(A;x,y.R[x; y]) sq_stable: SqStable(P) uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q wellfounded: WellFnd{i}(A;x,y.R[x; y]) member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] Des: Des(A;a,b.<[a; b]) prop: all: x:A. B[x] subtype_rel: A ⊆B so_apply: x[s] guard: {T} so_lambda: λ2x.t[x] uimplies: supposing a infix_ap: y or: P ∨ Q exists: x:A. B[x] and: P ∧ Q ge: i ≥  decidable: Dec(P) less_than: a < b squash: T not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top cand: c∧ B iff: ⇐⇒ Q cons: [a b] less_than': less_than'(a;b) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] nat_plus: + true: True uiff: uiff(P;Q) sq_stable: SqStable(P) descending: descending(a,b.<[a; b];L) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B select: L[n] subtract: m llex: llex(A;a,b.<[a; b]) nil: [] it: istype: istype(T) nat:
Lemmas referenced :  descending_wf append_wf cons_wf istype-universe Des_wf infix_ap_wf llex_wf wellfounded_wf sq_stable_wf all_wf subtype_rel_dep_function list_wf subtype_rel_universe1 subtype_rel_self nil_wf llex-append1 less_than_wf length_wf hd_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf descending-append decidable__lt list-cases length_of_nil_lemma product_subtype_list reduce_hd_cons_lemma length_of_cons_lemma list_ind_cons_lemma list_ind_nil_lemma append-nil subtype_rel_list top_wf add_nat_plus length_wf_nat nat_plus_properties add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma false_wf append_assoc_sq istype-false non_neg_length subtract_wf itermSubtract_wf int_term_value_subtract_lemma le_wf squash_wf true_wf stuck-spread istype-base subtype_rel-equal nat_properties int_seg_properties int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality inhabitedIsType because_Cache setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt universeIsType setEquality functionIsType instantiate cumulativity universeEquality independent_functionElimination functionEquality closedConclusion independent_isectElimination dependent_set_memberEquality_alt setIsType dependent_functionElimination unionElimination inlFormation_alt productIsType equalityIsType1 natural_numberEquality imageElimination productElimination approximateComputation dependent_pairFormation_alt int_eqEquality voidElimination independent_pairFormation inrFormation_alt hyp_replacement applyLambdaEquality promote_hyp hypothesis_subsumption imageMemberEquality baseClosed pointwiseFunctionality baseApply addEquality minusEquality voidEquality

Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a,b:A.    SqStable(<[a;b]))
    {}\mRightarrow{}  WellFnd\{i\}(A;a,b.<[a;b])
    {}\mRightarrow{}  WellFnd\{i\}(Des(A;a,b.<[a;b]);L1,L2.L1  llex(A;a,b.<[a;b])  L2))



Date html generated: 2019_10_15-AM-11_12_05
Last ObjectModification: 2018_10_11-PM-11_08_12

Theory : general


Home Index