Nuprl Lemma : wellfounded-llex
∀[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].
  ((∀a,b:A.  SqStable(<[a;b]))
  ⇒ WellFnd{i}(A;a,b.<[a;b])
  ⇒ WellFnd{i}(Des(A;a,b.<[a;b]);L1,L2.L1 llex(A;a,b.<[a;b]) L2))
Proof
Definitions occuring in Statement : 
llex: llex(A;a,b.<[a; b]), 
Des: Des(A;a,b.<[a; b]), 
wellfounded: WellFnd{i}(A;x,y.R[x; y]), 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
infix_ap: x f y, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
wellfounded: WellFnd{i}(A;x,y.R[x; y]), 
member: t ∈ T, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
Des: Des(A;a,b.<[a; b]), 
prop: ℙ, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
guard: {T}, 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
infix_ap: x f y, 
or: P ∨ Q, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
ge: i ≥ j , 
decidable: Dec(P), 
less_than: a < b, 
squash: ↓T, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
cons: [a / b], 
less_than': less_than'(a;b), 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
nat_plus: ℕ+, 
true: True, 
uiff: uiff(P;Q), 
sq_stable: SqStable(P), 
descending: descending(a,b.<[a; b];L), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
select: L[n], 
subtract: n - m, 
llex: llex(A;a,b.<[a; b]), 
nil: [], 
it: ⋅, 
istype: istype(T), 
nat: ℕ
Lemmas referenced : 
descending_wf, 
append_wf, 
cons_wf, 
istype-universe, 
Des_wf, 
infix_ap_wf, 
llex_wf, 
wellfounded_wf, 
sq_stable_wf, 
all_wf, 
subtype_rel_dep_function, 
list_wf, 
subtype_rel_universe1, 
subtype_rel_self, 
nil_wf, 
llex-append1, 
less_than_wf, 
length_wf, 
hd_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
descending-append, 
decidable__lt, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
reduce_hd_cons_lemma, 
length_of_cons_lemma, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
append-nil, 
subtype_rel_list, 
top_wf, 
add_nat_plus, 
length_wf_nat, 
nat_plus_properties, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
false_wf, 
append_assoc_sq, 
istype-false, 
non_neg_length, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
le_wf, 
squash_wf, 
true_wf, 
stuck-spread, 
istype-base, 
subtype_rel-equal, 
nat_properties, 
int_seg_properties, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
inhabitedIsType, 
because_Cache, 
setElimination, 
rename, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
universeIsType, 
setEquality, 
functionIsType, 
instantiate, 
cumulativity, 
universeEquality, 
independent_functionElimination, 
functionEquality, 
closedConclusion, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
setIsType, 
dependent_functionElimination, 
unionElimination, 
inlFormation_alt, 
productIsType, 
equalityIsType1, 
natural_numberEquality, 
imageElimination, 
productElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
independent_pairFormation, 
inrFormation_alt, 
hyp_replacement, 
applyLambdaEquality, 
promote_hyp, 
hypothesis_subsumption, 
imageMemberEquality, 
baseClosed, 
pointwiseFunctionality, 
baseApply, 
addEquality, 
minusEquality, 
voidEquality
Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a,b:A.    SqStable(<[a;b]))
    {}\mRightarrow{}  WellFnd\{i\}(A;a,b.<[a;b])
    {}\mRightarrow{}  WellFnd\{i\}(Des(A;a,b.<[a;b]);L1,L2.L1  llex(A;a,b.<[a;b])  L2))
Date html generated:
2019_10_15-AM-11_12_05
Last ObjectModification:
2018_10_11-PM-11_08_12
Theory : general
Home
Index