Nuprl Lemma : dm-neg-is-hom-opposite

[T:Type]. ∀[eq:EqDecider(T)].
  x.¬(x) ∈ Hom(opposite-lattice(free-DeMorgan-lattice(T;eq));free-DeMorgan-lattice(T;eq)))


Proof




Definitions occuring in Statement :  dm-neg: ¬(x) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) opposite-lattice: opposite-lattice(L) bounded-lattice-hom: Hom(l1;l2) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T lambda: λx.A[x] universe: Type
Definitions unfolded in proof :  bounded-lattice-hom: Hom(l1;l2) member: t ∈ T uall: [x:A]. B[x] top: Top cand: c∧ B uimplies: supposing a so_apply: x[s] and: P ∧ Q prop: so_lambda: λ2x.t[x] bdd-distributive-lattice: BoundedDistributiveLattice subtype_rel: A ⊆B lattice-hom: Hom(l1;l2) lattice-0: 0 record-select: r.x opposite-lattice: opposite-lattice(L) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt lattice-1: 1 free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) fset-singleton: {x} cons: [a b] empty-fset: {} nil: [] it:
Lemmas referenced :  deq_wf opposite-lattice-join dm-neg-properties opposite-lattice-meet opposite-lattice-point lattice-join_wf lattice-meet_wf equal_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set free-DeMorgan-lattice_wf opposite-lattice_wf lattice-point_wf subtype_rel-equal dm-neg_wf void-list-equality nil_wf lattice-1_wf bdd-distributive-lattice_wf lattice-0_wf
Rules used in proof :  universeEquality because_Cache isect_memberEquality hypothesisEquality cumulativity thin isectElimination extract_by_obid equalitySymmetry equalityTransitivity axiomEquality sqequalRule hypothesis sqequalHypSubstitution dependent_set_memberEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution functionExtensionality independent_pairEquality independent_pairFormation productElimination voidEquality voidElimination independent_isectElimination productEquality instantiate applyEquality lambdaEquality rename setElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].
    (\mlambda{}x.\mneg{}(x)  \mmember{}  Hom(opposite-lattice(free-DeMorgan-lattice(T;eq));free-DeMorgan-lattice(T;eq)))



Date html generated: 2020_05_20-AM-08_54_39
Last ObjectModification: 2020_02_03-AM-11_40_03

Theory : lattices


Home Index