Nuprl Lemma : dm-neg-is-hom-opposite
∀[T:Type]. ∀[eq:EqDecider(T)].
  (λx.¬(x) ∈ Hom(opposite-lattice(free-DeMorgan-lattice(T;eq));free-DeMorgan-lattice(T;eq)))
Proof
Definitions occuring in Statement : 
dm-neg: ¬(x)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
opposite-lattice: opposite-lattice(L)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
universe: Type
Definitions unfolded in proof : 
bounded-lattice-hom: Hom(l1;l2)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
subtype_rel: A ⊆r B
, 
lattice-hom: Hom(l1;l2)
, 
lattice-0: 0
, 
record-select: r.x
, 
opposite-lattice: opposite-lattice(L)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
lattice-1: 1
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
Lemmas referenced : 
deq_wf, 
opposite-lattice-join, 
dm-neg-properties, 
opposite-lattice-meet, 
opposite-lattice-point, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
free-DeMorgan-lattice_wf, 
opposite-lattice_wf, 
lattice-point_wf, 
subtype_rel-equal, 
dm-neg_wf, 
void-list-equality, 
nil_wf, 
lattice-1_wf, 
bdd-distributive-lattice_wf, 
lattice-0_wf
Rules used in proof : 
universeEquality, 
because_Cache, 
isect_memberEquality, 
hypothesisEquality, 
cumulativity, 
thin, 
isectElimination, 
extract_by_obid, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
sqequalRule, 
hypothesis, 
sqequalHypSubstitution, 
dependent_set_memberEquality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
functionExtensionality, 
independent_pairEquality, 
independent_pairFormation, 
productElimination, 
voidEquality, 
voidElimination, 
independent_isectElimination, 
productEquality, 
instantiate, 
applyEquality, 
lambdaEquality, 
rename, 
setElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].
    (\mlambda{}x.\mneg{}(x)  \mmember{}  Hom(opposite-lattice(free-DeMorgan-lattice(T;eq));free-DeMorgan-lattice(T;eq)))
Date html generated:
2020_05_20-AM-08_54_39
Last ObjectModification:
2020_02_03-AM-11_40_03
Theory : lattices
Home
Index