Nuprl Lemma : fl-all_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[phi:Point(face-lattice(T;eq))]. ∀[i:T].  ((∀i.phi) ∈ Point(face-lattice(T;eq)))


Proof




Definitions occuring in Statement :  fl-all: (∀i.phi) face-lattice: face-lattice(T;eq) lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fl-all: (∀i.phi) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice prop: and: P ∧ Q uimplies: supposing a
Lemmas referenced :  deq_wf lattice-join_wf lattice-meet_wf equal_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set face-lattice_wf lattice-point_wf fset_wf union-deq_wf deq-fset-member_wf bnot_wf band_wf fl-filter_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality unionEquality hypothesis inlEquality inrEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache cumulativity applyEquality instantiate productEquality universeEquality independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[phi:Point(face-lattice(T;eq))].  \mforall{}[i:T].
    ((\mforall{}i.phi)  \mmember{}  Point(face-lattice(T;eq)))



Date html generated: 2020_05_20-AM-08_52_51
Last ObjectModification: 2016_01_15-PM-05_40_14

Theory : lattices


Home Index