Nuprl Lemma : fl-lift-unique

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))]. ∀[f0,f1:T ⟶ Point(L)].
  ∀g:Hom(face-lattice(T;eq);L)
    fl-lift(T;eq;L;eqL;f0;f1) g ∈ Hom(face-lattice(T;eq);L) 
    supposing ∀x:T. (((g (x=0)) (f0 x) ∈ Point(L)) ∧ ((g (x=1)) (f1 x) ∈ Point(L))) 
  supposing ∀x:T. (f0 x ∧ f1 0 ∈ Point(L))


Proof




Definitions occuring in Statement :  fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice1: (x=1) face-lattice0: (x=0) face-lattice: face-lattice(T;eq) bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-0: 0 lattice-meet: a ∧ b lattice-point: Point(l) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B and: P ∧ Q cand: c∧ B implies:  Q bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  face-lattice-hom-unique fl-lift_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf face-lattice0_wf face-lattice1_wf bounded-lattice-hom_wf face-lattice_wf lattice-0_wf deq_wf bdd-distributive-lattice_wf istype-universe iff_weakening_equal squash_wf true_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination independent_isectElimination hypothesis applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule equalityIstype independent_functionElimination because_Cache independent_pairFormation functionIsType universeIsType productIsType instantiate productEquality cumulativity isectEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies functionIsTypeImplies universeEquality natural_numberEquality imageElimination imageMemberEquality baseClosed productElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[eqL:EqDecider(Point(L))].
\mforall{}[f0,f1:T  {}\mrightarrow{}  Point(L)].
    \mforall{}g:Hom(face-lattice(T;eq);L)
        fl-lift(T;eq;L;eqL;f0;f1)  =  g  supposing  \mforall{}x:T.  (((g  (x=0))  =  (f0  x))  \mwedge{}  ((g  (x=1))  =  (f1  x))) 
    supposing  \mforall{}x:T.  (f0  x  \mwedge{}  f1  x  =  0)



Date html generated: 2020_05_20-AM-08_53_31
Last ObjectModification: 2020_02_03-PM-03_52_32

Theory : lattices


Home Index