Nuprl Lemma : face-lattice-hom-unique
∀T:Type. ∀eq:EqDecider(T). ∀L:BoundedDistributiveLattice. ∀eqL:EqDecider(Point(L)). ∀f0,f1:T ⟶ Point(L).
  ∀[g,h:Hom(face-lattice(T;eq);L)].
    g = h ∈ Hom(face-lattice(T;eq);L) 
    supposing (∀x:T. (g (x=0) ∧ g (x=1) = 0 ∈ Point(L)))
    ∧ (∀x:T. ((g (x=0)) = (h (x=0)) ∈ Point(L)))
    ∧ (∀x:T. ((g (x=1)) = (h (x=1)) ∈ Point(L)))
Proof
Definitions occuring in Statement : 
face-lattice1: (x=1)
, 
face-lattice0: (x=0)
, 
face-lattice: face-lattice(T;eq)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-0: 0
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
face-lattice: face-lattice(T;eq)
, 
fl-deq: fl-deq(T;eq)
, 
bdd-lattice: BoundedLattice
, 
cand: A c∧ B
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
compose: f o g
Lemmas referenced : 
uall_wf, 
lattice-point_wf, 
face-lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-0_wf, 
lattice-1_wf, 
all_wf, 
face-lattice0_wf, 
face-lattice1_wf, 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf, 
deq_wf, 
fl-point, 
subtype_rel_weakening, 
fset_wf, 
assert_wf, 
fset-antichain_wf, 
union-deq_wf, 
fset-member_wf, 
deq-fset_wf, 
not_wf, 
set_wf, 
ext-eq_inversion, 
free-dlwc-basis, 
face-lattice-constraints_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
deq-implies, 
fl-deq_wf, 
lattice-hom-fset-join, 
subtype_rel_transitivity, 
bdd-lattice_wf, 
fset-image_wf, 
lattice-fset-meet_wf, 
free-dlwc-inc_wf, 
free-dist-lattice-with-constraints_wf, 
lattice-fset-join_wf, 
squash_wf, 
decidable_wf, 
decidable-equal-deq, 
true_wf, 
iff_weakening_equal, 
fset-image-compose, 
lattice-hom-fset-meet, 
face-lattice0-is-inc, 
face-lattice1-is-inc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
independent_isectElimination, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
axiomEquality, 
functionEquality, 
setEquality, 
unionEquality, 
inlEquality, 
inrEquality, 
dependent_functionElimination, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
independent_pairFormation, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
unionElimination
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:BoundedDistributiveLattice.  \mforall{}eqL:EqDecider(Point(L)).
\mforall{}f0,f1:T  {}\mrightarrow{}  Point(L).
    \mforall{}[g,h:Hom(face-lattice(T;eq);L)].
        g  =  h 
        supposing  (\mforall{}x:T.  (g  (x=0)  \mwedge{}  g  (x=1)  =  0))
        \mwedge{}  (\mforall{}x:T.  ((g  (x=0))  =  (h  (x=0))))
        \mwedge{}  (\mforall{}x:T.  ((g  (x=1))  =  (h  (x=1))))
Date html generated:
2020_05_20-AM-08_53_22
Last ObjectModification:
2017_07_28-AM-09_16_25
Theory : lattices
Home
Index