Nuprl Lemma : lattice-hom-fset-meet
∀[l1,l2:BoundedLattice]. ∀[eq1:EqDecider(Point(l1))]. ∀[eq2:EqDecider(Point(l2))]. ∀[f:Hom(l1;l2)].
∀[s:fset(Point(l1))].
  ((f /\(s)) = /\(f"(s)) ∈ Point(l2))
Proof
Definitions occuring in Statement : 
lattice-fset-meet: /\(s)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
bdd-lattice: BoundedLattice
, 
lattice-point: Point(l)
, 
fset-image: f"(s)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fset: fset(T)
, 
subtype_rel: A ⊆r B
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
bdd-lattice: BoundedLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
or: P ∨ Q
, 
cons: [a / b]
, 
decidable: Dec(P)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
empty-fset: {}
, 
lattice-fset-meet: /\(s)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
fset-add: fset-add(eq;x;s)
, 
fset-union: x ⋃ y
, 
l-union: as ⋃ bs
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind
Lemmas referenced : 
lattice-point_wf, 
list_wf, 
set-equal_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
fset_wf, 
bounded-lattice-hom_wf, 
deq_wf, 
bdd-lattice_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
le_wf, 
istype-nat, 
fset-image-empty, 
reduce_nil_lemma, 
reduce_cons_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
lattice-hom-meet, 
lattice-fset-meet_wf, 
decidable-equal-deq, 
list_subtype_fset, 
lattice-meet_wf, 
subtype_rel_self, 
iff_weakening_equal, 
fset-image_wf, 
fset-add-as-cons, 
fset-union_wf, 
fset-singleton_wf, 
decidable_wf, 
fset-image-union, 
lattice-fset-meet-union, 
fset-image-singleton, 
lattice-fset-meet-singleton, 
quotient-member-eq, 
set-equal-equiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
promote_hyp, 
productElimination, 
productIsType, 
equalityIstype, 
universeIsType, 
sqequalBase, 
equalitySymmetry, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
independent_isectElimination, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
setElimination, 
rename, 
independent_pairFormation, 
equalityTransitivity, 
lambdaFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
intWeakElimination, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
functionIsTypeImplies, 
unionElimination, 
hypothesis_subsumption, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
voidEquality, 
isect_memberEquality, 
universeEquality, 
imageMemberEquality, 
hyp_replacement, 
functionEquality, 
functionIsType
Latex:
\mforall{}[l1,l2:BoundedLattice].  \mforall{}[eq1:EqDecider(Point(l1))].  \mforall{}[eq2:EqDecider(Point(l2))].  \mforall{}[f:Hom(l1;l2)].
\mforall{}[s:fset(Point(l1))].
    ((f  /\mbackslash{}(s))  =  /\mbackslash{}(f"(s)))
Date html generated:
2020_05_20-AM-08_44_48
Last ObjectModification:
2018_12_13-PM-02_29_51
Theory : lattices
Home
Index