Nuprl Lemma : free-dlwc-basis
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
  (x = \/(λs./\(λx.free-dlwc-inc(eq;a.Cs[a];x)"(s))"(x)) ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
Proof
Definitions occuring in Statement : 
free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
lattice-fset-join: \/(s)
, 
lattice-fset-meet: /\(s)
, 
lattice-point: Point(l)
, 
fset-image: f"(s)
, 
deq-fset: deq-fset(eq)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
squash: ↓T
, 
rev_uimplies: rev_uimplies(P;Q)
, 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
guard: {T}
, 
cons: [a / b]
, 
fset-singleton: {x}
, 
sq_stable: SqStable(P)
, 
btrue: tt
, 
eq_atom: x =a y
, 
record-update: r[x := v]
, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
record-select: r.x
, 
lattice-0: 0
, 
lattice-fset-join: \/(s)
, 
bfalse: ff
, 
it: ⋅
, 
nil: []
, 
empty-fset: {}
, 
list_ind: list_ind, 
reduce: reduce(f;k;as)
, 
deq-member: x ∈b L
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
fset-member: a ∈ s
, 
fset-add: fset-add(eq;x;s)
, 
true: True
, 
fset-constrained-ac-lub: lub(P;ac1;ac2)
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
fset-ac-lub: fset-ac-lub(eq;ac1;ac2)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
f-proper-subset: xs ⊆≠ ys
, 
order: Order(T;x,y.R[x; y])
, 
anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced : 
lattice-point_wf, 
free-dist-lattice-with-constraints_wf, 
fset_wf, 
deq_wf, 
istype-universe, 
strong-subtype-set2, 
fset-contains-none_wf, 
fset-all_wf, 
fset-antichain_wf, 
assert_wf, 
strong-subtype-deq-subtype, 
deq-fset_wf, 
free-dlwc-point, 
lattice-join_wf, 
lattice-meet_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
fset-image_wf, 
fset-subtype2, 
assert_witness, 
equal_wf, 
and_wf, 
member-fset-singleton, 
fset-member_wf, 
isect_wf, 
uall_wf, 
iff_weakening_uiff, 
fset-all-iff, 
fset-antichain-singleton, 
fset-singleton_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
lattice-fset-join-is-lub, 
member-fset-image-iff, 
free-dlwc-le, 
not_wf, 
assert_of_bnot, 
f-subset_wf, 
iff_wf, 
all_wf, 
bool_wf, 
deq-f-subset_wf, 
fset-filter_wf, 
fset-null_wf, 
bnot_wf, 
assert-fset-null, 
assert-deq-f-subset, 
fset-filter-is-empty, 
f-subset_weakening, 
decidable__equal-free-dist-lattice-with-constraints-point, 
lattice-fset-join_wf, 
fset-ac-le-implies2, 
sq_stable__fset-member, 
set_wf, 
fset-add_wf, 
empty-fset_wf, 
sq_stable__squash, 
sq_stable__all, 
exists_wf, 
squash_wf, 
fset-induction, 
fset-union_wf, 
iff_weakening_equal, 
lattice-fset-join-union, 
true_wf, 
free-dlwc-join, 
member-fset-union, 
f-proper-subset-dec_wf, 
member-fset-minimals, 
member-fset-add, 
lattice-fset-join-singleton, 
assert-fset-antichain, 
deq-implies, 
bdd-distributive-lattice-subtype-lattice, 
lattice-le-order, 
istype-void, 
lattice-fset-meet-free-dlwc-inc, 
sq_stable__assert
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
because_Cache, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
instantiate, 
universeEquality, 
independent_isectElimination, 
functionExtensionality, 
lambdaEquality, 
productEquality, 
setEquality, 
cumulativity, 
productElimination, 
rename, 
setElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
equalityTransitivity, 
dependent_functionElimination, 
levelHypothesis, 
applyLambdaEquality, 
equalitySymmetry, 
hyp_replacement, 
addLevel, 
isect_memberFormation, 
independent_functionElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
lambdaFormation, 
imageElimination, 
functionEquality, 
dependent_pairFormation, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
unionElimination, 
inlFormation, 
inrFormation, 
lambdaFormation_alt, 
equalityIsType1, 
setIsType
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].
\mforall{}[x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
    (x  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dlwc-inc(eq;a.Cs[a];x)"(s))"(x)))
Date html generated:
2020_05_20-AM-08_49_49
Last ObjectModification:
2018_11_08-PM-06_01_41
Theory : lattices
Home
Index