Nuprl Lemma : lattice-fset-meet-free-dlwc-inc
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[s:fset(T)].
  /\(λx.free-dlwc-inc(eq;a.Cs[a];x)"(s)) = {s} ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])) 
  supposing ↑fset-contains-none(eq;s;x.Cs[x])
Proof
Definitions occuring in Statement : 
free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
lattice-fset-meet: /\(s), 
lattice-point: Point(l), 
fset-image: f"(s), 
fset-contains-none: fset-contains-none(eq;s;x.Cs[x]), 
deq-fset: deq-fset(eq), 
fset-singleton: {x}, 
fset: fset(T), 
deq: EqDecider(T), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
prop: ℙ, 
cand: A c∧ B, 
uiff: uiff(P;Q), 
implies: P ⇒ Q, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
all: ∀x:A. B[x], 
free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
fset-ac-le: fset-ac-le(eq;ac1;ac2), 
rev_uimplies: rev_uimplies(P;Q), 
squash: ↓T, 
not: ¬A, 
false: False, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
fset-singleton: {x}, 
fset-filter: {x ∈ s | P[x]}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
fset-null: fset-null(s), 
assert: ↑b, 
fset-contains-none: fset-contains-none(eq;s;x.Cs[x]), 
fset-contains-none-of: fset-contains-none-of(eq;s;cs), 
f-subset: xs ⊆ ys, 
sq_stable: SqStable(P), 
order: Order(T;x,y.R[x; y]), 
anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced : 
free-dlwc-point, 
deq-fset_wf, 
fset_wf, 
strong-subtype-deq-subtype, 
assert_wf, 
fset-antichain_wf, 
fset-all_wf, 
fset-contains-none_wf, 
strong-subtype-set2, 
fset-singleton_wf, 
fset-antichain-singleton, 
fset-all-iff, 
member-fset-singleton, 
assert_witness, 
fset-member_wf, 
lattice-fset-meet-is-glb, 
free-dist-lattice-with-constraints_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
fset-image_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
free-dlwc-inc_wf, 
member-fset-image-iff, 
deq_wf, 
free-dlwc-le, 
bnot_wf, 
fset-null_wf, 
fset-filter_wf, 
deq-f-subset_wf, 
bool_wf, 
all_wf, 
iff_wf, 
f-subset_wf, 
assert_of_bnot, 
not_wf, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
eqtt_to_assert, 
eqff_to_assert, 
filter_cons_lemma, 
filter_nil_lemma, 
equal-wf-T-base, 
uiff_transitivity, 
assert-deq-f-subset, 
iff_transitivity, 
iff_weakening_uiff, 
null_cons_lemma, 
false_wf, 
f-singleton-subset, 
assert-fset-null, 
f-union_wf, 
fset-filter-is-empty, 
exists_wf, 
member-f-union, 
fset-member_witness, 
and_wf, 
lattice-fset-meet_wf, 
decidable__equal-free-dist-lattice-with-constraints-point, 
fset-ac-le-implies2, 
ifthenelse_wf, 
empty-fset_wf, 
sq_stable__fset-member, 
mem_empty_lemma, 
lattice-le-order, 
bdd-distributive-lattice-subtype-lattice
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
setEquality, 
productEquality, 
lambdaEquality, 
functionExtensionality, 
independent_isectElimination, 
because_Cache, 
dependent_set_memberEquality, 
independent_pairFormation, 
productElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
independent_functionElimination, 
equalityTransitivity, 
instantiate, 
universeEquality, 
lambdaFormation, 
axiomEquality, 
functionEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
imageElimination, 
unionElimination, 
baseClosed, 
equalityElimination, 
impliesFunctionality, 
dependent_pairFormation, 
imageMemberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].  \mforall{}[s:fset(T)].
    /\mbackslash{}(\mlambda{}x.free-dlwc-inc(eq;a.Cs[a];x)"(s))  =  \{s\}  supposing  \muparrow{}fset-contains-none(eq;s;x.Cs[x])
Date html generated:
2020_05_20-AM-08_49_19
Last ObjectModification:
2017_07_28-AM-09_15_32
Theory : lattices
Home
Index